Наиболее удобным для аналитического описания является так называемый экспоненциальный (или показательный) закон надежности, который выражается формулой

где - постоянный параметр.

График экспоненциального закона надежности показан на рис. 7.10. Для этого закона функция распределения времени безотказной работы имеет вид

а плотность

Это есть уже известный нам показательный закон распределения, по которому распределено расстояние между соседними событиями в простейшем потоке с интенсивностью (см. § 4 гл. 4).

При рассмотрении вопросов надежности часто бывает удобно представлять себе дело так, словно на элемент действует простейший поток отказов с интенсивностью Я; элемент отказывает в момент, когда приходит первое событие этого потока.

Образ «потока отказов» приобретает реальный смысл, если отказавший элемент немедленно заменяется новым (восстанавливается).

Последовательность случайных моментов времени, в которые проис ходят отказы (рис. 7.11), представляет собой простейший поток событии, а интервалы между событиями - независимые случайные величины, распределенные по показательному закону (3,3),

Понятие «интенсивности отказов» может быть введено не только для экспоненциального, но и для любого другого закона надежности о плотностью вся разница будет в том, что при неэкспоненциальном законе интенсивность отказов Я будет уже не постоянной величиной, а переменной.

Интенсивностью (или иначе «опасностью») отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый - до момента своего отказа. Обозначим - число элементов, оказавшихся исправными к моменту , как и и раньше, - число элементов, отказавших на малом участке времени На единицу времени придется среднее число отказов

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к моменту t элементов . Нетрудно убедиться, что при большом N это отношение будет приближенно равно интенсивности отказов

Действительно, при большом N

Но согласно формуле (2.6)

В работах по надежности приближенное выражение (3.5) часто рассматривают как определение интенсивности отказов, т. е. определяют ее как среднее число отказов в единицу времени, приходящееся на один работающий элемент.

Характеристике можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно. Действительно, рассмотрим элемент вероятности - вероятность того, что за время элемент перейдет из состояния «работает» в состояние «не работает», при условии, что до момента t он работал. В самом деле, безусловная вероятность отказа элемента на участке равна Это - вероятность совмещения двух событий:

А - элемент работал исправно до момента

В - элемент отказал на участке времени По правилу умножения вероятностей:

Учитывая, что получим:

а величина есть не что иное, как условная плотность вероятности перехода из состояния «работает» в состояние «отказал» для момента t.

Если известна интенсивность отказов , то можно выразить через нее надежность Учитывая, что запишем формулу (3.4) в виде:

Интегрируя, получим:

Таким образом надежность выражается через интенсивность отказов.

В частном случае, когда , формула (3.6) дает:

т. е. уже известный нам экспоненциальный закон надежности.

Пользуясь образом «потока отказов», можно истолковать не только формулу (3.7), но и более общую формулу (3.6). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности действует поток отказов с переменной интенсивностью Тогда формула (3.6) для выражает вероятность того, что на участке времени (0, t) не появится ни одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности работу элемента, начиная с момента включения можно представлять себе так, что на элемент действует пуассоновский поток отказов; для экспоненциального закона надежности это будет поток с постоянной интенсивностью , а для неэкспоненциального - с переменной интенсивностью

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется новым. Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским. Действительно, интенсивность его будет зависеть не просто от времени t, протекшего с начала всего процесса, а и от времени , протекшего со случайного момента включения именно данного элемента; значит, поток событий имеет последействие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отказать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса, но при переменной, а не постоянной интенсивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциального, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 7.12). Параметр этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой и осями координат. Для этого нужно положить параметр показательного закона равным

где - площадь, ограниченная кривой надежности

Таким образом, если мы хотим характеризовать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интенсивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определяли величину t как площадь, ограниченную кривой Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по статистическому материалу как среднее арифметическое всех наблюденных значений случайной величины Т - времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую

Пример 1. Надежность элемента убывает со временем по линейному закону (рис. 7.13). Найти интенсивность отказов и среднее время безотказной работы элемента

Решение. По формуле (3.4) на участке ) имеем:

Согласно заданному закону надежности 4

Различают три вида отказов:

· обусловленные скрытыми ошибками в конструкторско-технологической документации и производственными дефектами при изготовлении изделий;

· обусловленные старением и износом радио- и конструкционных элементов;

· обусловленные случайными факторами различной природы.

Для оценки надежности систем введены понятия «работоспособность» и «отказ».

Работоспособность и отказы. Работоспособность - это состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями технической документации. Отказ – событие, приводящее к полной или частичной утрате работоспособности изделия. По характеру изменения параметров аппаратуры отказы подразделяют на внезапные и по­степенные.

Внезапные (катастрофические) отказы характеризуются скачкообразным изменением одного или нескольких параметров аппаратуры и возникают в результате внезапного изменения одного или нескольких параметров элементов, из которых построена РЭА (обрыв или короткое замыкание). Устранение внезапного отказа производят заменой отказавшего элемента исправным или его ремонтом.

Постепенные (параметрические) отказы характеризуются изменением одного или нескольких параметров аппаратуры с течением времени. Они возникают в результате постепенного изменения параметров элементов до тех пор, пока значение одного из параметров не выйдет за некоторые пределы, определяющие нормальную работу элементов. Это может быть последствием старения элементов, воздействия колебаний температуры, влажности, давления, механических воздействий, и т.п. Устранение постепенного отказа связано либо с заменой, ремонтом, регулировкой параметров отказавшего элемента, либо с компенсацией за счет изменения параметров других элементов.

По взаимосвязи между собой различают отказы независимые, не свя­занные с другими отказами, и зависимые. По повторяемости возникновения отказы бывают одноразовые (сбои) и перемежающиеся. Сбой - однократно возникающий самоустраняющийся отказ, перемежающийся - многократно возникающий сбой одного и того же характера.

По наличию внешних признаков различают отказы явные - имею­щие внешние признаки появления, и неявные (скрытые), для обна­ружения которых требуется провести определенные действия.

По причине возникновения отказы подразделяют на конструкцион­ные, производственные и эксплуатационные, вызванные нарушением уста­новленных норм и правил при конструировании, производстве и эксплуата­ции РЭА.

По характеру устранения отказы делятся на устойчивые и самоустра­няющиеся. Устойчивый отказ устраняется заменой отказавшего элемента (модуля), а самоустраняющийся исчезает сам, но может повториться. Само­устраняющийся отказ может проявиться в виде сбоя или в форме переме­жающегося отказа. Отказ типа сбоя особенно характерен для РЭА. Появление сбоев обусловливается внешними и внутренними факторами.

К внешним факторам относятся колебания напряжения питания, вибрации, температурные колебания. Специальными мерами (стабилизации питания, амортизация, термостатирование и др.) влияние этих факторов может быть значительно ослаблено. К внутренним факторам относятся флуктуационные колебания параметров элементов, несинхронность работы отдельных устройств, внутренние шумы и наводки.

7.2. количественные характеристики Надежности

Надежность, как сочетание свойств безотказности, ремонтоспособности, долговечности и сохраняемости, и сами эти качества количественно характеризуются различными функциями и числовыми параметрами. Правильный выбор количественных показателей надежности РЭА позволяет объективно сравнивать технические характеристики различных изделий как на этапе проектирования, так и на этапе эксплуатации (правильный выбор системы элементов, технические обоснования работы по эксплуатации и ремонту РЭА, объем необходимого запасного имущества и др.).

Возникновение отказов носит случайный харак­тер. Процесс возникновения отказов в РЭА описывается сложными вероятностными законами. В инженерной практике для оценки надежности РЭА вводят количественные характеристики, основанные на обработке экспериментальных данных.

Безотказность изделий характеризуется

Вероятностью безотказной работы P(t) (характеризует скорость снижения надежности во времени),

Частотой отказов F(t),

Интенсивностью отказов l(t),

Средней наработкой на отказ Т ср.

Можно также надежность РЭА оценивать вероятностью отказа q(t) = 1 - P(t).

Рассмотрим оценку надежности неремонтируемых систем. Приведенные характеристики верны и для ремонтируемых систем, если их рассматривать для случая до первого отказа.

Пусть на испытания поставлена партия, содержащая N(0) изделий. В процессе испытаний к моменту времени t вышли из строя n изделий. Осталось исправными:

N(t) = N(0) – n.

Отношение Q(t) = n/N(0) является оценкой вероятности выхода из строя изделия за время t. Чем больше число изделий, тем точнее оценка надежности результатов, строгое выражение для которой выглядит следующим образом:

Величина P(t), равная

P(t) = 1 – Q(t)

называется теоретической вероятностью безотказной работы и характеризует вероятность того, что к моменту t не произойдет отказа.

Вероятность безотказной работы P(t) представляет собой вероятность того, что в пределах указанного периода времени t, отказ объекта не возникнет. Этот показатель определяется отношение числа элементов объекта, безотказно проработавших до момента времени t к общему числу элементов объекта, работоспособных в начальный момент.

Вероятность безотказной работы изделия может быть определена и для произвольного интервала времени (t 1 ; t 2) с момента начала эксплуатации. В этом случае говорят об условной вероятности P(t 1 ; t 2) в период (t 1 ; t 2) при рабочем состоянии в момент времени t 1 . Условная вероятность P(t 1 ; t 2) определяется отношением:

P(t 1 ; t 2) = P(t 2)/ P(t 1),

где P(t 1) и P(t 2) - соответственно значения вероятностей в начале (t 1) и конце (t 2) наработки.

Частота отказов. Значение частоты отказов за время t в данном опыте определяется отношением f(t) = Q(t)/t = n/(N(0)*t). В качестве показателя надежности неремонтируемых систем чаще используют производную по времени от функции отказа Q(t), которая характеризует плотность распределения наработки изделия до отказа f(t):

f(t) = dQ(t)/dt = - dP(t)/dt.

Величина f(t)dt характеризует вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в рабочем состоянии.

Интенсивность отказов. Критерием, более полно определяющим надежность неремонтируемой РЭА и ее модулей, является интенсивность отказов l(t). Интенсивность отказов l(t) представляет условную вероятность возникновения отказа в системе в некоторый момент времени наработки при условии, что до этого момента отказов в системе не было. Величина l(t) определяется отношением

l (t) = f(t)/P(t) = (1/P(t)) dQ/dt.

Интенсивность отказов l (t) - это число отказов n(t) элементов объекта в единицу времени, отнесенное к среднему числу элементов N(t) объекта, работоспособных к моменту времени t:

l (t)=n(t)/(N(t)*t), где

t - заданный отрезок времени.

Например: 1000 элементов объекта работали 500 часов. За это время отказали 2 элемента. Отсюда, l(t)=n(t)/(N*t)=2/(1000*500)=4*10-6 1/ч, т.е. за 1 час может отказать 4-е элемента из миллиона.

Надежность объекта, как системы, характеризуется потоком отказов l, численно равное сумме интенсивности отказов отдельных устройств:

По формуле рассчитывается поток отказов и отдельных устройств объекта, состоящих, в свою очередь, из различных узлов и элементов, характеризующихся своей интенсивностью отказов. Формула справедлива для расчета потока отказов системы из n элементов в случае, когда отказ любого из них приводит к отказу всей системы в целом. Такое соединение элементов называется логически последовательным или основным. Кроме, того, существует логически параллельное соединение элементов, когда выход их строя одного из них не приводит к отказу системы в целом. Связь вероятности безотказной работы P(t) и потока отказов l определяется:

P(t)=exp(-lt), очевидно, что 0

Показатели интенсивности отказов комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в табл. 1 приведена интенсивность отказов l(t) некоторых элементов.

Наименование элемента Интенсивность отказов, *10 -5, 1/ч
Резисторы 0,0001…1,5
Конденсаторы 0,001…16,4
Трансформаторы 0,002…6,4
Катушки индуктивности 0,002…4,4
Реле 0,05…101
Диоды 0,012…50
Триоды 0,01…90
Коммутационные устройства 0,0003…2,8
Разъемы 0,001…9,1
Соединения пайкой 0,01…1
Провода, кабели 0,01…1
Электродвигатели 100…600

Отсюда следует, что величина l(t)dt характеризует условную вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в работоспособном состоянии. Этот показатель характеризует на­дежность РЭА в любой момент времени и для интервала Δt i может быть вычислен по формуле:

l = Δn i /(N ср Δt i),

где Δn i = N i - N i+1 - число отказов; N c p = (N i + N i +1)/2 - среднее число работоспособных изделий; N i , и N i+1 - количество работоспособных изделий в начале и конце промежутка времени Δt i .

Вероятность безотказной работы связана с величинами l(t) и f(t) следующими выражениями:

P(t) = exp(- l(t) dt), P(t) = exp(- f(t) dt)

Зная одну из характеристик надежности P(t), l(t) или f(t), можно найти две другие.

Если необходимо оценить условную вероятность, можно воспользоваться следующим выражением:

P(t 1 ; t 2) = exp(- l(t) dt).

Если РЭА содержит N последовательно соединенных однотипных эле­ментов, то l N (t) = Nl(t).

Средняя наработка на отказ Т ср и вероятность безотказной работы P(t) связаны зависимостью

Т ср = P(t) dt.

По статистическим данным

Т ср = Dn i t ср i , t ср i = (t i +t i +1)/2, m = t/Dt

где Δn i - количество отказавших изделий за интервал времени Δt ср i = (t i +1 -t i);

t i , t i +1 - соответственно время в начале и конце интервала испытаний (t 1 =0);

t - интервал времени, за который отказали все изделия; m - число времен­ных интервалов испытаний.

Средняя наработка до отказа To - это математическое ожидание наработки объекта до первого отказа:

To=1/l=1/(N*li), или, отсюда: l=1/To

Время безотказной работы равно обратной величине интенсивности отказов.

Например: технология элементов обеспечивает среднюю интенсивность отказов li=1*10 -5 1/ч. При использовании в объекта N=1*10 4 элементарных деталей суммарная интенсивность отказов lо= N*li=10 -1 1/ч. Тогда среднее время безотказной работы объекта To=1/lо=10 ч. Если выполнить объекта на основе 4-х больших интегральных схем (БИС), то среднее время безотказной работы объекта увеличится в N/4=2500 раз и составит 25000 ч. или 34 месяца или около 3 лет.

Пример. Из 20 неремонтируемых изделий в первый год эксплуатации отка­зало 10, во второй – 5, в третий - 5. Определить вероятность безотказной работы, частоту отка­зов, интенсивность отказов в первый год эксплуатации, а также среднюю наработку до первого отказа.

P(1)=(20-10)/20 = 0.5,

P(2)=(20-15)/20 = 0.25, P(1;2)= P(2)/ P(1) = 0.25/0.5 = 0.5,

P(3)=(20-20)/20 = 0, P(2;3)= P(3)/ P(2) = 0/0.25 = 0,

f(1)=10/(20·1) = 0.5 г -1 ,

f(2)=5/(20·1) = 0.25 г -1 ,

f(3)=5/(20·1) = 0.25 г -1 ,

l(1)=10/[(20*1] = 0.5 г -1 ,

l(2)=5/[(10*1] = 0.5 г -1 ,

l(3)=5/[(5*1] = 1 г -1 ,

Т ср = (10·0.5+5·1.5+5·2.5)/20 = 1.25 г.

Правильно понимать физическую природу и сущность отказов очень важно для обоснованной оценки надежности технических устройств. В практике эксплуатации различают три характерных типа отказов: приработочные, внезапные и отказы из-за износа. Они различаются физической природой, способами предупреждения и устранения и проявляются в различные периоды эксплуатации технических устройств.

Отказы удобно характеризовать «кривой жизни» изделия, которая иллюстрирует зависимость интенсивности происходящих в нем отказов l(t) от времени t. Такая идеализированная кривая для РЭА приведена на рисунке 7.2.1.


Рис. 7.2.1.

Она имеет три явно выраженных периода: приработки I, нормальной эксплуатации II, и износа III.

Приработочные отказы наблюдаются в первый период (0 - t 1) эксплуатации РЭА и возникают, когда часть элементов, входящих в состав РЭА, являются бракованными или имеют скрытые дефекты. Физический смысл приработочных отказов может быть объяснен тем, что электрические и механические нагрузки, приходящиеся на компоненты РЭА в приработочный период, превосходят их электрическую и механическую прочность. Поскольку продолжительность периода приработки РЭА определяется в основном интенсивностью отказов входящих в ее состав некачественных элементов, то продолжительность безотказной работы таких элементов обычно сравнительно низка, поэтому выявить и заменить их удается за сравнительно короткое время.

В зависимости от назначения РЭА период приработки может продолжаться от нескольких до сотен часов. Чем более ответственное изделие, тем больше продолжительность этого периода. Период приработки составляет обычно доли и единицы процента от времени нормальной эксплуатации РЭА во втором периоде.

Как видно из рисунка, участок «кривой жизни» РЭА, соответствующий периоду приработки I, представляет собой монотонно убывающую функцию l(t), крутизна которой и протяженность во времени тем меньше, чем совершеннее конструкция, выше качество ее изготовления и более тщательно соблюдены режимы приработки. Период приработки считают завершенным, когда интенсивность отказов РЭА приближается к минимально достижимой (для данной конструкции) величине l min в точке t 1 .

Приработочные отказы могут быть следствием конструкторских (например, неудачная компоновка), технологических (некачественное выполнение сборки) и эксплуатационных (нарушение режимов приработки) ошибок.

С учетом этого, при изготовлении изделий предприятиям рекомендуется проводить прогон изделий в течение нескольких десятков часов работы (до 2-5 суток) по специально разработанным методикам, в которых предусматривается работа при влиянии различных дестабилизирующих факторов (циклы непрерывной работы, циклы включений-выключений, изменения температуры, напряжения питания и пр.).

Период нормальной эксплуатации. Внезапные отказы наблюдаются во второй период (t 1 -t 2) эксплуатации РЭА. Они возникают неожиданно вследствие действия ряда случайных факторов, и предупредить их приближение практически не представляется возможным, тем более что к этому времени в РЭА остаются только полноценные компоненты. Однако и такие отказы все же подчиняются определенным закономерностям. В частности, частота их появления в течение достаточно большого промежутка времени одинакова в однотипных классах РЭА.

Физический смысл внезапных отказов может быть объяснен тем, что при быстром количественном изменении (обычно - резком увеличении) какого-либо параметра в компонентах РЭА происходят качественные изменения, в результате которых они утрачивают полностью или частично свои свойства, необходимые для нормального функционирования. К внезапным отказам РЭА относят, например, пробой диэлектриков, короткие замыкания проводников, неожиданные механические разрушения элементов конструкции и т. п.

Период нормальной эксплуатации РЭА характеризуется тем, что интенсивность ее отказов в интервале времени (t 1 -t 2) минимальна и имеет почти постоянное значение l min » const. Величина l min тем меньше, а интервал (t 1 – t 2) тем больше, чем совершеннее конструкция РЭА, выше качество ее изготовления и более тщательно соблюдены режимы эксплуатации. Период нормальной эксплуатации РЭА общетехнического назначения может продолжаться десятки тысяч часов. Он может даже превышать время морального старения аппаратуры.

Период износа. В конце строка службы аппаратуры количество отказов снова начинает нарастать. Они в большинстве случаев являются закономерным следствием постепенного износа и естественного старения используемых в аппаратуре материалов и элементов. Зависят они главным образом от продолжительности эксплуатации и «возраста» РЭА.

Средний срок службы компонента до износа - величина более определенная, чем время возникновения приработочных и внезапных отказов. Их появление можно предвидеть на основании опытных данных, полученных в результате испытаний конкретной аппаратуры.

Физический смысл отказов из-за износов может быть объяснен тем, что в результате постепенного и сравнительно медленного количественного изменения некоторого параметра компонента РЭА этот параметр выходит за пределы установленного допуска, полностью или частично утрачивает свои свойства, необходимые для нормального функционирования. При износе происходит частичное разрушение материалов, при старении - изменение их внутренних физико-химических свойств.

К отказам в результате износа относят потерю чувствительности, точности, механический износ деталей и др. Участок (t 2 -t 3) «кривой жизни» РЭА, соответствующий периоду износа, представляет собой монотонно возрастающую функцию, крутизна которой тем меньше (а протяженность во времени тем больше), чем более качественные материалы и комплектующие изделия использованы в аппаратуре. Эксплуатация аппаратуры прекращается, когда интенсивность отказов РЭА приблизится к максимально допустимой для данной конструкции.

Вероятность безотказной работы РЭА. Возникновение отказов в РЭА носит случайный характер. Следова­тельно, время безотказной работы есть случайная величина, для описания которой используют разные распределения: Вейбулла, экспоненциальный, Пуассона.

Отказы в РЭА, содержащей большое число однотипных неремонтируе­мых элементов, достаточно хорошо подчиняются распределению Вейбулла. Экспоненциальное распределение основано на предположении постоянной во времени интенсивности отказов и успешно может быть использовано при расчетах надежности аппаратуры одноразового применения, содержащей большое число неремонтируемых компонентов. При длительной работе РЭА для планирования ее ремонта важно знать не вероятность возникновения отказов, а их число за определенный период эксплуатации. В этом случае применяют распределение Пуассона, позво­ляющее подсчитать вероятность появления любого числа случайных собы­тий за некоторый период времени. Распреде­ление Пуассона применимо для оценки надежности ремонтируемой РЭА с простейшим потоком отказов.

Вероятность отсутствия отказа за время t составляет Р 0 = ехр(-t), а вероятность появления i отказов за то же время P i =  i t i exp(-t)/i!, где i = 0, 1, 2, ..., n - число отказов.

7.3. Структурная надежность аппаратуры

Структурная надежность любого радиоэлектронного аппарата, в том числе и РЭА, это его результирующая надежность при известной структурной схеме и известных значениях надежности всех элементов, составляющих структурную схему.

При этом под элементами понимаются как интегральные микросхемы, резисторы, конденсаторы и т. п., выполняющие определенные функции и включенные в общую электрическую схему РЭА, так и элементы вспомогательные, не входящие в структурную схему РЭА: соединения паяные, разъемные, элементы крепления и т. д.

Надежность указанных элементов достаточно подробно изложена в специальной литературе. При дальнейшем рассмотрении вопросов надежности РЭА будем исходить из того, что надежность элементов, составляющих структурную (электрическую) схему РЭА, задана однозначно.

Количественные характеристики структурной надежности РЭА.

Для их нахождения составляют структурную схему РЭА и указывают элементы устройства (блоки, узлы) и связи между ними.

Затем производят анализ схемы и выделяют элементы и связи, которые определяют выполнение основной функции данного устройства.

Из выделенных основных элементов и связей составляют функциональную (надежностную) схему, причем в ней выделяют элементы не по конструктивному, а по функциональному признаку с таким расчетом, чтобы каждому функциональному элементу обеспечивалась независимость, т. е. чтобы отказ одного функционального элемента не вызывал изменения вероятности появления отказа у другого соседнего функционального элемента. При составлении отдельных надежностных схем (устройств узлов, блоков) иногда следует объединять те конструктивные элементы, отказы которых взаимосвязаны, но не влияют на отказы других элементов.

Определение количественных показателей надежности РЭА с помощью структурных схем дает возможность решать вопросы выбора наиболее надежных функциональных элементов, узлов, блоков, из которых состоит РЭА, наиболее надежных конструкций, панелей, стоек, пультов, рационального порядка эксплуатации, профилактики и ремонта РЭА, состава и количества ЗИП.


Похожая информация.


Методика оценки интенсивности отказов функциональных узлов интегральных схем

Барышников А.В.

(ФГУП НИИ “Автоматики”)

1. Введение

Проблема прогнозирования надежности радиоэлектронной аппаратуры (РЭА) актуальна практически для всех современных технических систем. Учитывая, что РЭА включает в себя электронные компоненты, встает задача разработки методик, позволяющих оценивать интенсивности отказов (ИО) этих компонентов. Нередко технические требования по надежности, предъявляемые в технических заданиях (ТЗ) на разработку РЭА, входят в противоречие с требованиями, предъявляемыми к весам и габаритам РЭА, что не позволяет выполнить требования ТЗ за счет, например, дублирования.

Для ряда видов РЭА повышенные требования по надежности предъявляются к контролирующим устройствам, размещенным в одном кристалле с основными функциональными узлами аппаратуры. Например, к схеме сложения по модулю 2, обеспечивающей контроль работы основного и дублирующего узлов какого-либо блоков аппаратуры. Повышенные требования по надежности могут предъявлять также к областям памяти, в которых хранится информация, необходимая для выполнения алгоритма работы аппаратуры.

Предлагаемая методика позволяет оценить ИО разных функциональных областей микросхем. В микросхемах памяти: оперативных запоминающих устройствах (ОЗУ), постоянных запоминающих устройствах (ПЗУ), репрограммируемых запоминающих устройствах (РПЗУ), это интенсивности отказов накопителей, дешифраторов и схем управления. В схемах микроконтроллеров и микропроцессоров методика позволяет определить ИО областей памяти, арифметического логического устройства, аналого-цифровых и цифро-аналоговых преобразователей и т.д. В программируемых логических интегральных схемах (ПЛИС), ИО основных функциональных узлов, из которых состоит ПЛИС: конфигурируемый логический блок, блок входа/выхода, области памяти, JTAG и т.д. Методика также позволяет определить ИО одного вывода микросхемы, одной ячейки памяти, а, в некоторых случаях, и ИО отдельных транзисторов.

2. Назначение и область применения методики

Методика предназначена для оценки эксплуатационной ИО λ э разных функциональных узлов микросхем: микропроцессоров, микроконтроллеров, микросхем памяти, программируемых логических интегральных схемах. В частности, внутри кристальных областей ЗУ, а также ИО ячеек накопителей ЗУ микросхем зарубежного производства, в том числе микропроцессоров, ПЛИС. К сожалению, отсутствие информации об ИО корпусов не позволяет применить методику для отечественных микросхем.

ИО, определенные по данной методике, являются исходными данными для расчета надежностных характеристик при проведении инженерных исследований аппаратуры.

Методика содержит алгоритм расчета ИО, алгоритм проверки полученных результатов расчета, примеры расчета ИО функциональных узлов микропроцессора, схем памяти, программируемых логических схем.

3. Допущения методики

Методика основана на следующих допущениях :

Отказы элементов независимы;

ИО микросхемы постоянна.

Дополнительно к этим допущениям будет показана возможность разделения ИО микросхем на ИО корпуса и интенсивность отказов кристалла.

4. Исходные данные

1.Функциональное назначение микросхемы: микропроцессор, микроконтроллер, память, ПЛИС и т.д.

2.Технология изготовления микросхемы: биполярная, КМОП.

3.Значение интенсивности отказов микросхемы.

4.Блок-схема микросхемы.

5.Тип и объем накопителей схем памяти.

6. Количество выводов корпуса.

5.1. По известным значениям ИО микросхемы определяются ИО корпуса и кристалла.

5.2. По найденному значению ИО кристалла, для микросхемы памяти, исходя из ее типа и технологии изготовления, рассчитываются ИО накопителя, схем дешифраторов, схем управления. Расчет основан на стандартном построении электрических схем, обслуживающих накопитель.

5.3. Для микропроцессора или микроконтроллера, используя результаты расчета, полученные в предыдущем пункте, определяются ИО областей памяти. Разность между ИО кристалла и найденными значениями ИО областей памяти составит значение ИО оставшейся части микросхемы.

5.4. По известным значениям ИО кристаллов для семейства ПЛИС, их функциональному составу и количеству однотипных узлов, составляется система линейных уравнений. Каждое из уравнений системы составляется для одного типономинала из семейства ПЛИС. Правая часть каждого из уравнений системы представляет собой сумму произведений значений ИО функциональных узлов определенного типа на их количество. Левая часть каждого из уравнений системы – значение ИО кристалла конкретного типономинала ПЛИС из семейства.

Максимальное количество уравнений в системе равно количеству ПЛИС в семействе.

Решение системы уравнений позволяет получить значения ИО функциональных узлов ПЛИС.

5.5. На основе результатов расчета, полученных в предыдущих пунктах, могут быть найдены значения ИО отдельной ячейки памяти, вывода микросхемы или транзистора конкретного узла блок-схемы, если известна схема электрическая принципиальная узла.

5.6. Проверка результатов расчета для микросхемы памяти производится сравнением значения ИО для другой микросхемы памяти, полученное стандартным методом, со значением ИО этой микросхемы рассчитанное с использованием данных полученных в п.5.2 этого раздела.

5.7. Проверка результатов расчета для ПЛИС производится расчетом ИО кристалла одного из типономиналов рассматриваемого семейства ПЛИС, который не входил в систему уравнений. Расчет проводится с использованием значений ИО функциональных узлов, полученных в п.5.4 этого раздела, и сравнением полученного значения ИО ПЛИС с значением ИО, рассчитанным с использованием стандартных методов.

6. Анализ модели прогнозирования интенсивности отказов микросхем с точки зрения возможности разделения интенсивности отказов микросхемы на сумму интенсивностей отказов кристалла и корпуса

ИО кристалла, корпуса и внешних выводов микросхемы определяются из математической модели прогнозирования ИО зарубежных интегральных схем для каждого типономинала ИС.

Проанализируем слагаемые математической модели для расчета эксплуата-

ционной ИО λэ цифровых и аналоговых интегральных схем зарубежного производства:

λэ = (С 1 π т +С 2 π E) π Q π L, (1),

где: C 1 - составляющая ИО ИС, зависящая от степени интеграции;

π т - коэффициент, учитывающий перегрев кристалла относительно окружающей среды;

C 2 - составляющая ИО ИС, зависящая от типа корпуса;

- π Е - коэффициент, учитывающий жесткость условий эксплуатации РЭА (группу эксплуатации аппаратуры);

- π Q - коэффициент, учитывающий уровень качества изготовления ЭРИ;

- π L -коэффициент, учитывающий отработанность технологического процесса изготовления ЭРИ;

Это выражение справедливо для микросхем, изготовленных как по биполяр-ной, так и по МОП технологии, и включает в себя цифровые и аналоговые схемы, программируемые логические матрицы и ПЛИС, микросхемы памяти, микропро-цессоры.

Математическая модель прогнозируемой ИО интегральных микросхем, за первоисточник которой взят стандарт министерства обороны США , представляет собой сумму двух слагаемых. Первое слагаемое характеризует отказы, определяемые степенью интеграции кристалла и электрическим режимом работы микросхемы (коэффициенты C 1, π т), второе слагаемое характеризует отказы, связанные с типом корпуса, количеством выводов корпуса и условиями эксплуатации (коэффициенты C 2, - π Е).

Такое разделение объясняется возможностью выпуска одной и той же микросхемы в разных типах корпусов, существенно различающихся своей надежностью (стойкостью к вибрациям, герметичностью, гигроскопичностью и т.п.). Обозначим первое слагаемое как ИО определяемую кристаллом (λкр), а второе - корпусом (λкорп).

Из (1) получим:

λкр = С 1 π т π Q π L, λкорп = С 2 π E π Q π L (2)

Тогда ИО одного вывода микросхемы равна:

λ 1Выв = λкорп /N Выв = С 2 π E π Q π L /N Выв,

где N Выв - количество выводов в корпусе интегральной схемы.

Найдем отношение ИО корпуса к эксплуатационной ИО микросхемы:

λкорп / λэ = С 2 π E π Q π L / (С 1 π т +С 2 π E) π Q π L = С 2 π E /(С 1 π т +С 2 π E) (3)

Проанализируем это выражение с точки зрения воздействия на него типа корпуса, количества выводов, перегрева кристалла за счет мощности, рассеиваемой в кристалле, жесткости условий эксплуатации.

6.1. Влияние жесткости условий эксплуатации

Разделив числитель и знаменатель выражения (3) на коэффициент π E получим:

λкорп / λэ = С 2 /(С 1 π т / π E + С 2) (4)

Анализ выражения (4) показывает, что процентное соотношение ИО корпуса и эксплуатационной ИО микросхем зависит от группы эксплуатации: чем жестче условия эксплуатации аппаратуры (больше значение коэффициента π E), тем большая доля отказов приходится на отказы корпуса (знаменатель в уравнении 4 уменьшается) и отношение λкорп / λэ стремиться к 1.

6.2. Влияние типа корпуса и количества выводов корпуса

Разделив числитель и знаменатель выражения (3) на коэффициент С 2 получим:

λкорп / λэ = π E /(С 1 π т /С 2 + π E) (5)

Анализ выражения (5) показывает, что процентное соотношение ИО корпуса и эксплуатационной ИО микросхем зависит от соотношения коэффици­ентов С 1 и С 2 , т.е. от соотношения степени интеграции микросхемы и параметров корпуса: чем больше количество элементов в микросхе­ме (больше коэффициент С 1), тем меньшая доля отказов приходится на отказы корпуса (отношение λкорп / λэ стремиться к нулю) и чем больше количество выводов в корпусе, тем больший вес приобретают отказы корпуса (отношение λкорп / λэ стремиться к 1).

6.3. Влияние мощности, рассеиваемой в кристалле

Из выражения (3) видно, что с увеличением π т (коэффициент, отражающий перегрев кристалла за счет мощности, рассеиваемой в кристалле), значение знаменателя уравнения увеличивается, и, следовательно, доля отказов приходящаяся на корпус уменьшается и отказы кристалла приобретают больший относительный вес.

Вывод:

Анализ изменения значения отношения λкорп / λэ (уравнение 3) в зависимости от типа корпуса, количества выводов, перегрева кристалла за счет мощности, рассеиваемой в кристалле, и жесткости условий эксплуатации показал, что первое слагаемое в уравнении (1) характеризует эксплуатационную ИО кристалла, второе – эксплуатационную ИО корпуса и уравнения (2) могут быть использованы для оценки эксплуатационной ИО непосредственно полупроводникового кристалла, корпуса и ИО выводов корпуса. Значение эксплуатационной ИО кристалла может быть использована как исходный материал для оценки ИО функциональных узлов микросхем.

7. Расчет интенсивности отказов ячейки памяти запоминающих устройств, входящих в состав микросхем памяти, микропроцессоров и микроконтроллеров.

Для определения ИО, приходящейся на бит информации полупроводниковых ЗУ, рассмотрим их состав. В состав полупроводникового ЗУ любого типа входят , :

1)Накопитель

2)Схема обрамления:

o адресная часть (строчные и столбцовые дешифраторы)

o числовая часть (усилители записи и считывания)

o блок местного управления - осуществляет координацию работы всех узлов в режимах хранения, записи, регенерации (динамические ЗУ) и стирания информации (РПЗУ).

7.1. Оценка количества транзисторов в различных областях ЗУ.

Рассмотрим каждую составляющую ИО ЗУ. Общее значение ИО ЗУ для микросхем разного типа с разным объемом накопителя можно определить, используя . ИО корпуса и кристалла рассчитываются в соответствии с разделом 5 настоящей работы.

К сожалению, в технических материалах на зарубежные микросхемы памяти отсутствует общее количество элементов, входящих в микросхему, а приводится только информационная емкость накопителя. Учитывая тот факт, что каждый тип ЗУ содержит стандартные блоки, оценим количество элементов, входящих в микросхему памяти, исходя из объема накопителя. Для этого рассмотрим схемотехнику построения каждого блока ЗУ.

7.1.1. Накопитель ОЗУ

В приведены электрические принципиальные схемы запоминающих ячеек ОЗУ, выполненных по ТТЛШ, ЭСЛ, МОП и КМОП технологиям. В таблице 1 приведено количество транзисторов, из которых строиться одна ячейка памяти (1 бит информации ОЗУ).

Таблица 1. Количество транзисторов в одной ячейке памяти ЗУ

Тип ОЗУ

Технология изготовления

ТТЛШ

ЭСЛ

МОП

КМОП

Статические

Количество элементов

4, 5, 6

Динамические

7.1.2. Накопители ПЗУ и ППЗУ

В биполярных ПЗУ и ППЗУ запоминающий элемент накопителя реализуется на основе диодных и транзисторных структур . Они выполняются в виде эмиттерных повторителей на n - p - n и p - n - p транзисторах, переходах коллектор-база, эмиттер-база, диодах Шоттки. В качестве запоминающего элемента в схемах, изготавливаемых по МОП и КМОП технологиям, используются p и n -канальные транзисторы. Запоминающий элемент состоит из 1 транзистора или диода. Общее количество транзисторов в накопителе ПЗУ или ППЗУ равно информационной емкости ЗУ БИС.

7.1.3. Накопитель РПЗУ

Информация, записанная в РПЗУ, хранится от нескольких до десятков лет. Поэтому РПЗУ часто называют энергонезависимой памятью. В основе механизма запо-

минания и хранения информации лежат процессы накопления заряда при записи, сохранении его при считывании и при выключении электропитания в специальных МОП транзисторах. Запоминающие элементы РПЗУ строятся, как правило, на двух транзисторах.

Таким образом, количество транзисторов в накопителе РПЗУ равно информационной емкости РПЗУ умноженной на 2.

7.1.4. Адресная часть

Адресная часть ЗУ строится на основе дешифраторов (декодеров). Они позволяют определить N -разрядное входное двоичное число путем получения единичного значения двоичной переменной на одном из выходов устройства. Для построения интегральных схем принято использовать линейные дешифраторы или комбинацию линейных и прямоугольных дешифраторов. Линейный дешифратор имеет N входов и 2 N логических схем “И”. Найдем количество транзисторов необходимых для построения таких дешифраторов в КМОП базисе (как наиболее часто используемым для создания БИС). В таблице 2 приведено количество транзисторов необходимых для построения дешифраторов на разное количество входов.

Таблица 2. Количество транзисторов, необходимых для построения дешифраторов

Кол-во

Входов

Адресные инверторы

Схемы “И”

Суммарное количество транзисторов в де-шифраторе

2* N *2 N +2* N

Кол-во

Инверторов

Кол-во

Транзисторов

Кол-во

cхем

Кол-во транзисторов

2* N *2 N

4*4=16

16+4=20

6*8=48

48+6=54

8*16=128

128+8=136

10*32 = 320

320+10 = 330

64*12 = 768

768+12 = 780

128*14=1792

1792+14=1806

256*16=4096

4096+16=4112

512*18=9216

9216+18=9234

1024

1024*20=20480

20480+20=20500

Для линейных дешифраторов разрядность дешифруемого числа не превышает 8-10. Поэтому при увеличении количества слов в ЗУ более 1К используют модульный принцип построения ЗУ.

7.1.5. Числовая часть

(усилители записи и считывания)

Эти схемы предназначены для преобразования уровней считываемых сигналов в уровни выходных сигналов логических элементов конкретного типа и увеличения нагрузочной способности. Как правило, они выполняются по схеме с открытым коллектором (биполярные) или с тремя состояниями (КМОП). Каждая из выходных схем может состоять из нескольких (двух или трех) инверторов. Максимальное количество транзисторов в этих схемах при максимальной разрядности микропроцессора 32 составляет не более 200.

7.1.6. Блок местного управления

В блок местного управления, в зависимости от типа ЗУ, могут входить строчные и столбцовые буферные регистры, адресные мультиплексоры, блоки управления регенерацией в динамических ЗУ, схемы стирания информации.

7.1.7. Оценка количества транзисторов в различных областях ЗУ

Количественное соотношение транзисторов ОЗУ, входящих в накопитель, дешифратор и блок местного управления приблизительно равно: 100:10:1 , что составляет 89%, 10% и 1% соответственно. Количество транзисторов в ячейке накопителя ОЗУ, ПЗУ, ППЗУ, РПЗУ приведено в таблице 1. Пользуясь данными этой таблицы, процентными соотношениями элементов, входящих в различные области ОЗУ, а также предполагая, что количество элементов в дешифраторе и блоке местного управления для одного и того же объема накопителя разных типов ЗУ остается приблизительно постоянным, можно оценить соотношение транзисторов входящих в накопитель, дешифратор и блок местного управления разных типов ЗУ. В таблице 3 приведены результаты такой оценки.

Таблица 3 Количественное соотношение транзисторов в разных функциональных областях ЗУ

Количественное соотношение элементов различных областей ЗУ

Накопитель

Дешифратор

Блок местного управления

ПЗУ, ППЗУ

Таким образом, зная объем накопителя и ИО кристалла ЗУ, можно найти ИО накопителя, адресной части, числовой части, блока местного управления, а также ИО ячейки памяти и транзисторов, входящих в состав схем обрамления.

8. Расчет интенсивности отказов функциональных узлов микропроцессоров и микроконтроллеров

В разделе приведен алгоритм расчета ИО функциональных узлов микросхем микропроцессоров и микроконтроллеров. Методика применима для микропроцессоров и микроконтроллеров с разрядностью не более 32 бит.

8.1. Исходные данные для расчета интенсивности отказов

Ниже приведены исходные данные, необходимые для расчета ИО микропроцессоров, микроконтроллеров и частей их электрических схем. Под частью электрической схемы будем понимать как функционально законченные узлы микропроцессора (микроконтроллера), а именно, разные виды памятей (ОЗУ, ПЗУ, ППЗУ, РПЗУ, АЦП, ЦАП и т.д.), так и отдельные вентили или даже транзисторы.

Исходные данные

Разрядность микропроцессора или микроконтроллера;

Технология изготовления микросхемы;

Вид и организация внутри кристальных ЗУ;

Информационная ёмкость ЗУ;

Потребляемая мощность;

Тепловое сопротивление кристалл – корпус или кристалл – окружающая среда;

Тип корпуса микросхемы;

Количество выводов корпуса;

Повышенная рабочая температура окружающей среды.

Уровень качества изготовления.

8.2. Алгоритм расчета интенсивности отказов микропроцессора (микроконтроллера) и функциональных узлов микропроцессора (микроконтроллера)

1.Определить эксплуатационную ИО микропроцессора или микроконтроллера (λэ мп), используя исходные данные с помощью одной из программ автоматизированного расчета: “АСРН”, “Асоника-К” или с помощью стандарта “Military HandBook 217F ”.

Примечание: далее все расчеты и комментарии будут приводиться с точки зрения применения АСРН, т.к. методологии использования и содержание программ, “Асоника-К” и стандарта “Military HandBook 217F ” имеют много общего.

2. Определить значение ИО ЗУ, входящих в состав микропроцессора (λ Э ОЗУ, λ Э ПЗУ, ППЗУ, λ Э РПЗУ) , предполагая, что каждое ЗУ представляет собой отдельную микросхему в своем корпусе.

λ Э ОЗУ = λ ОЗУ + λкорп,

λ Э ПЗУ, ППЗУ = λ ПЗУ, ППЗУ + λкорп,

λ Э РПЗУ = λ РПЗУ + λкорп,

где λ Э – эксплутационные значения ИО разных типов ЗУ, λкорп,– ИО корпусов для каждого типа ЗУ: λ ОЗУ, λ ПЗУ,ППЗУ, λ РПЗУ – ИО ОЗУ, ПЗУ, ППЗУ, РПЗУ без учета корпуса, соответственно.

Поиск исходных данных для расчета эксплуатационных значений ИО разных типов ЗУ производится по технической информации (Data Sheet ) и каталогам интегральных схем. В указанной литературе необходимо найти ЗУ, тип которых (ОЗУ, ПЗУ, ППЗУ, РПЗУ), объем накопителя, организация и технология изготовления совпадают или близки к ЗУ входящих в состав микропроцессора (микроконтроллера). Найденные технические характеристики микросхем памяти используются в АСРН для расчета эксплуатационной ИО микросхем ЗУ. Мощность, потребляемая ЗУ, выбирается исходя из электрического режима работы микропроцессора (микроконтроллера).

3. Определить значения ИО внутри кристальных областей микропроцессора (микроконтроллера),ЗУ и АЛУ без учета корпуса: λкр мп, λ ОЗУ, λ ПЗУ,ППЗУ, λ РПЗУ, . λ АЛУ

ИО внутри кристальных областей микропроцессора, ОЗУ, ПЗУ, ППЗУ, РПЗУ определяются из соотношения: λкр = С 1 π т π Q π L.

ИО АЛУ и части кристалла без схем памяти определяется из выражения:

. λ АЛУ = λкр мп - λ ОЗУ - λ ПЗУ,ППЗУ - λ РПЗУ

Значения ИО других функционально законченных частей микропроцессора (микроконтроллера) находятся аналогичным образом.

4. Определить ИО накопителей внутри кристальных ЗУ: λ Н ОЗУ, λ Н ПЗУ,ППЗУ, λ Н РПЗУ.

На основании данных таблицы 3 можно выразить процентное соотношение количества транзисторов в разных функциональных областях ЗУ, предполагая, что общее количество транзисторов в ЗУ равно 100%. В таблице 4 приведено это процентное соотношение транзисторов, входящих в внутри кристальные ЗУ разных типов.

На основании процентного соотношения количества транзисторов, входящих в разные функциональные области ЗУ и найденного значения ИО внутри кристальной части ЗУ, определяются ИО функциональных узлов.

Таблица 4. Процентное соотношение транзисторов

Количественное соотношение транзисторов функциональных областей ЗУ (%)

Накопитель

Дешифратор

Блок местного управления

ПЗУ, ППЗУ

λ Н ОЗУ = 0,89*λ ОЗУ;

λ Н ПЗУ,ППЗУ = 0,607*λ ПЗУ,ППЗУ;

λ Н РПЗУ = 0,75* λ РПЗУ,

где: λ Н ОЗУ, λ Н ПЗУ,ППЗУ, λ Н РПЗУ – ИО накопителей ОЗУ, ПЗУ, ППЗУ, РПЗУ соответствен-но.

8.3. Расчет интенсивности отказов функциональных узлов ЗУ: дешифраторов, адресной части, схем управления.

Используя данные о соотношении количества транзисторов в каждой части ЗУ (таблица 4), можно найти интенсивности отказов дешифраторов, адресной части и схем управления ЗУ. Зная количество транзисторов в каждой части ЗУ можно найти интенсивность отказов группы или отдельных транзисторов ЗУ.

9. Расчет интенсивности отказов функционально законченных узлов микросхем памяти

В разделе приведен алгоритм расчета ИО функционально законченных узлов микросхем запоминающих устройств. Методика применима для микросхем памяти приведенных в АСРН.

9.1. Исходные данные для расчета интенсивности отказов

Ниже приведены исходные данные, необходимые для расчета ИО функционально законченных узлов микросхем памяти. Под функционально законченными узлами микросхем памяти будем понимать накопитель, адресную часть, схему управления. Методика позволяет рассчитывать также ИО частей функциональных узлов, отдельных вентилей, транзисторов.

Исходные данные

Тип памяти: ОЗУ, ПЗУ, ППЗУ, РПЗУ;

Информационная ёмкость ЗУ;

Организация ОЗУ;

Технология изготовления;

Потребляемая мощность;

Тип корпуса микросхемы;

Количество выводов корпуса;

Тепловое сопротивление кристалл – корпус или кристалл – окружающая среда;

Группа эксплуатации аппаратуры;

Повышенная рабочая температура окружающей среды;

Уровень качества изготовления.

9.2. Алгоритм расчета интенсивности отказов схем памяти и функционально законченных узлов схем памяти

1, Определить эксплуатационную ИО микросхемы памяти (λэ п), используя исходные данные с помощью одной из программ автоматизированного расчета: “АСРН”, “Асоника-К” или с помощью стандарта “Military HandBook 217F ”.

2. Определить значения ИО кристалла ЗУ без корпуса λкр зу.

λкр зу= С 1 π т π Q π L.

3. Расчет ИО накопителя внутри кристальных ЗУ и ИО функциональных узлов проводить в соответствии с разделом 8.2.

10. Расчет интенсивности отказов функционально законченных узлов программируемых логических интегральных схем и базовых матричных кристаллов

Каждое семейство ПЛИС состоит из набора типономиналов микросхем одинаковой архитектуры. Архитектура кристалла построена на основе использования одинаковых функциональных узлов нескольких типов. Микросхемы разных типономиналов внутри семейства отличаются друг от друга типом корпуса и количеством функциональных узлов каждого типа: конфигурируемый логический блок, блок входа/выхода, память, JTAG и тому подобное.

Следует отметить, что кроме конфигурируемых логических блоков и блоков входа/выхода каждая ПЛИС содержит матрицу ключей, формирующих связи между элементами ПЛИС. Учитывая тот факт, что названные области распределены равномерно по кристаллу, кроме блоков вход/выход, которые размещены по периферии, можно считать, что матрица ключей является частью конфигурируемых логических блоков и блоков входа/выхода.

Для расчета значений интенсивностей отказов функциональных узлов необходимо составить систему линейных уравнений. Система уравнений составляется для каждого семейства ПЛИС.

Каждое из уравнений системы представляет собой равенство, в левой части которого записывается значение ИО кристалла для конкретного типономинала микросхемы из выбранного семейства. Правая часть представляет собой сумму произведений количества функциональных узлов n категории i на ИО этих узлов λni .

Ниже приведен общий вид такой системы уравнений.

λ э a = a 1 λ 1 + a 2 λ 2 + …+a n λ n

λ э b = b 1 λ 1 + b 2 λ 2 + …+b n λ n

……………………………

λ э k = k 1 λ 1 + k 2 λ 2 + …+k n λ n

где

λ э a , λ э b , … λ э k –– эксплуатационные ИО микросхем семейства ПЛИС (микросхем а, в, …к, соответственно),

a 1 , a 2 , …, a n –– количество функциональных узлов 1, 2, … n категории в микросхеме а, соответственно,

b 1 , b 2 , …, b n –– количество функциональных узлов категории 1, 2, … n , в микросхеме в, соответственно,

k 1 , k 2 , …, k n –– количество функциональных узлов категории 1, 2, … n , в микросхеме к, соответственно,

λ 1 , λ 2 , …, λ n –– ИО функциональных узлов категории 1, 2, … n , соответственно.

Значения эксплуатационных ИО микросхем λ э a , λ э b , … λ э k рассчитываются по АСРН, количество и тип функциональных узлов приведены в технической документации на ПЛИС (Data Sheet или в отечественной периодике).

Значения ИО функциональных узлов семейства ПЛИС λ 1 , λ 2 , …, λ n находятся из решения системы уравнений.

11. Проверка результатов расчета

Проверка результатов расчета для микросхемы памяти производится путем расчета ИО кристалла другой микросхемы памяти с помощью полученного значения ИО ячейки памяти и сравнением полученного значения ИО кристалла с значением ИО, рассчитанным с использованием стандартных методов (АСРН, Асоника, и т.д.).

Проверка результатов расчета для ПЛИС производится расчетом ИО кристалла ПЛИС другого типономинала из этого же семейства с помощью найденных значений ИО функциональных узлов ПЛИС и сравнением полученного значения ИО ПЛИС со значением ИО, рассчитанным с использованием стандартных методов (АСРН, Асоника, и т.д.).

12. Пример расчета интенсивностей отказов функциональных узлов ПЛИС и проверка результатов расчета

12.1. Расчет ИО функциональных узлов и выводов корпусов ПЛИС

Расчет ИО проведен на примере ПЛИС семейства Spartan , разработанного фирмой Xilinx .

Семейство Spartan состоит из 5 типономиналов ПЛИС, в состав которых входят матрица конфигурируемых логических блоков, блоки входа/выхода, логика граничного сканирования (JTAG ).

ПЛИС, входящие в семейство Spartan , отличаются количеством логических вентилей, количеством конфигурируемых логических блоков, количеством блоков входа/выхода, типами корпусов и количеством выводов корпусов.

Ниже приведен расчет ИО конфигурируемых логических блоков, блоков входа/выхода, JTAG для ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL .

Для проверки полученных результатов рассчитывается эксплуатационная ИО ПЛИС ХСS 30XL .. Эксплуатационная ИО ПЛИС ХСS 30XL рассчитывается с использованием значений ИО функциональных узлов ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL . Полученное значение ИО ПЛИС ХСS 30XL сравнивается со значением ИО, рассчитанным с применением АСРН. Также для проверки полученных результатов сравниваются значения ИО одного вывода для разных корпусов ПЛИС.

12.1.1. Расчет интенсивностей отказов функциональных узлов ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL

В соответствии с выше изложенным алгоритмом расчета для расчета ИО функциональных узлов ПЛИС необходимо:

Составить перечень и значения исходных данных для ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL , ХСS 30XL ;

Рассчитать эксплуатационные ИО ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL , ХСS 30XL (расчет проводится по с использованием исходных данных );

Составить систему линейных уравнений для кристаллов ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL ;

Найти решение системы линейных уравнений (неизвестными в системе уравнений являются ИО функциональных узлов: конфигурируемых логических блоков, блоков входа выхода, логики граничного сканирования);

Сравнить значения ИО кристалла ПЛИС ХСS 30XL , полученное в предыдущем пункте, с значением ИО кристалла, полученным с помощью АСРН;

Сравнить значения ИО вывода для разных корпусов;

Сформулировать вывод о справедливости проведенных расчетов;

При получении удовлетворительного совпадения интенсивностей отказов (от 10% до 20%) прекратить расчеты;

При большом расхождении результатов расчета провести коррекцию исходных данных.

В соответствии с исходными данными для расчета эксплуатационной ИО ПЛИС являются: технология изготовления, количество вентилей, потребляемая мощность, температура перегрева кристалла относительно окружающей среды, тип корпуса, количество выводов корпуса, тепловое сопротивление кристалл-корпус, уровень качества изготовления, группа эксплуатации аппаратуры, в которой применяется ПЛИС.

Все исходные данные, кроме потребляемой мощности, температуры перегрева кристалла и группы эксплуатации аппаратуры, приведены в . Потребляемая мощность может быть найдена либо в технической литературе, либо расчетом, либо измерением на плате. Температура перегрева кристалла относительно окружающей среды находится как произведение потребляемой мощности и теплового сопротивления кристалл-корпус. Группа эксплуатации аппаратуры приведена в технических условиях на аппаратуру.

Исходные данные для расчета эксплуатационной интенсивности отказов ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL , ХСS 30XL приведены в таблице 5.

Таблица 5. Исходные данные

Исходные

Типономинал ПЛИС

ХСS 05XL

ХСS 10XL

ХСS 20XL

ХСS 30XL

Технология

изготовления

Максимальное количество логи

ческих вентилей

Количество кон-фигурируемых

логич. блоков, N клб

Количество ис-пользуемых входов/выходов, N вх/вых

Тип корпуса

VQFP

TQFP

PQFP

PQFP

Количество выводов корпуса

Тепловое сопро-тивление крис-талл – корпус, 0 С/Вт

Уровень качест-ва изготовления

Коммерческий

Группа эксплуа-тации аппарату-ры

Для определения температуры перегрева кристалла относительно температуры окружающей среды необходимо найти потребляемую мощность для каждой микросхемы.

В большинстве КМОП интегральных схемах почти вся рассеиваемая мощность является динамической и определяется зарядом и разрядом внутренних и внешних нагрузочных емкостей. Каждый вывод в микросхеме рассеивает мощность в соответствии с своей емкостью, которая постоянна для каждого типа вывода, а частота, при которой переключается каждый вывод, может отличаться от тактовой частоты работы микросхемы. Общая динамическая мощность представляет собой сумму мощностей рассеиваемых на каждом выводе. Таким образом для расчета мощности нужно знать количество элементов, используемых в ПЛИС. В для семейства Spartan приведены значения тока потребления блоков вход/выход (12мА) при нагрузке 50 пФ, напряжении питания 3,3 и максимальной частоте работы ПЛИС 80МГц. Предполагая, что потребляемая мощность ПЛИС определяется количеством переключающихся блоков вход/выход (как наиболее мощных потребителей энергии), и в связи с отсутствием экспериментальных данных по мощности потребления, оценим мощность потребляемую каждой ПЛИС, учитывая, что одновременно переключается 50% блоков вход/выход при некоторой фиксированной частоте (при расчете частота была выбрана в 5 раз ниже максимальной).

В таблице 6 приведены значения мощности, потребляемой ПЛИС и температуры перегрева кристаллов относительно корпуса микросхемы.

Таблица 6. Мощность, потребляемая ПЛИС

ХСS 05XL

ХСS 10XL

ХСS 20XL

ХСS 30XL

Потребляемая

мощность, Вт

Температура перегрева кристалла, 0 С

Рассчитаем значения коэффициентов в уравнении (1):

λэ = (С 1 π т +С 2 π E) π Q π L

Коэффициенты π т, С 2 , π E , π Q , π L рассчитываются по АСРН. Коэффициенты С 1 находим с использованием аппроксимации значений коэффициента С 1 , приведенных в АСРН для ПЛИС разной степени интеграции.

Значения коэффициента С 1 для ПЛИС приведены в таблице 7.

Таблица 7. Значения коэффициента С 1

Количество вентилей в ПЛИС

Значения коэффициента С 1

До 500

0,00085

От 501 до1000

0,0017

От 2001 до 5000

0,0034

От 5001 до 20000

0,0068

Тогда для максимального количества вентилей ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL , ХСS 30XL получим значения коэффициента С 1 , 0,0034, 0,0048, 0,0068, 0,0078 соответственно.

Значения коэффициентов π т, С 2 , π E , π Q , π L , значения ИО кристаллов и корпусов, а также эксплуатационные значения ИО микросхем ХСS 05XL , ХСS 10XL , ХСS 20XL , ХСS 30XL приведены в таблице 8.

Таблица 8. Эксплуатационные значения ИО ПЛИС

Обозначение и наименование коэффициентов

Значения коэффициентов

ХСS 05XL

ХСS 10XL

ХСS 20XL

ХСS 30XL

π т

0,231

0,225

0,231

0,222

С 2

0,04

0,06

0,089

0,104

π E

π Q

π L

Интенсивность отказов кри-сталла, λкр = С 1 π т π Q π L *10 6 1/час

0,0007854

0,0011

0,00157

0,0018

Интенсивность отказов коруса, λкорп = С 2 π E π Q π L *10 6 1/час

0,445

0,52

Эксплуатационная интенсивность отказов ПЛИС λэ *10 6 1/час

0,2007854

0,3011

0,44657

0,5218

Найдем значения ИО конфигурируемых логических блоков λ клб, блоков вход/выход λ вх/вых и логики граничного сканирования λ JTAG для ПЛИС ХСS 05XL , ХСS 10XL , ХСS 20XL . Для этого составим систему линейных уравнений: * S 05 XL - ИО кристалла, количество конфигурируемых логических блоков, количество блоков вход/выход для ПЛИС ХСS 05XL , соответственно;

λкр ХС S 10 XL ,N клб ХС S 10 XL , N вх/вы ХС S 10 XL - ИО кристалла, количество конфигурируемых логических блоков, количество блоков вход/выход для ПЛИС ХСS 10XL , соответственно;

λкр ХС S 20 XL , N клб ХС S 20 XL , N вх/вы ХС S 20 XL - ИО кристалла, количество конфигурируемых логических блоков, количество блоков вход/выход для ПЛИС ХСS 20XL , соответственно.

Подставив в систему уравнений значения ИО кристаллов, количество конфигурируемых логических блоков и блоков вход/выход, получим:0,00157*10 -6 = 400*λ клб + 160 * λ вх/вых + λ JTAG

Система трех линейных уравнений с тремя неизвестными имеет единственное решение:

λ клб = 5,16*10 -13 1/час; λ вх/вых = 7,58*10 -12 1/час; λ JTAG = 1,498*10 -10 1/час.

12.1.2. Проверка результатов расчета

Для проверки полученного решения рассчитаем ИО кристалла ПЛИС ХС S 30 XL λкр ХС S 30 XL , используя найденные значения λ клб, λ вх/вых, λ JTAG .

По аналогии с уравнениями системы λкр ХС S 30 XL 1 равна:

λкр ХС S 30 XL 1 = λ клб * N клб ХС S 30 XL + λ вх/вых * N вх/вы ХС S 30 XL + λ JTAG =

576* 5,16*10 -13 + 192*7,58*10 -12 + 1,498*10 -10 = 0,0019*10 -6 1/час.

Значение ИО кристалла, полученное с использованием АСРН равно (таблица 9): 0,0018 *10 -6 . Процентное соотношение этих значений составляет: (λкр ХС S 30 XL 1 - λкр ХС S 30 XL )*100%/ λкр ХС S 30 XL 1 ≈ 5%.

ИО одного вывода, полученные делением ИО на количество выводов в корпусах для ПЛИС ХС S 05 XL , ХС S 10 XL , ХС S 20 XL , ХС S 20 XL , равны 0,002*10 -6 , 0,00208*10 -6 , 0,0021*10 -6 , 0,0021*10 -6 , соответственно, т.е. отличаются не более чем на 5%.

Отличие в значениях ИО составляющее около 5% определяется, вероятно, принятыми при расчете приблизительными величинами мощностей рассеивания, и, как следствие, неточными значениями коэффициентов π т, а также наличием неучтенных элементов ПЛИС, информация о которых в документации отсутствует.

В приложении приведена блок – схема расчета и проверки интенсивностей отказов функциональных областей ПЛИС.

13. Выводы

1.Предложена методика оценки ИО функциональных узлов интегральных схем.

2.Она позволяет рассчитывать:

а) для схем памяти - ИО накопителей запоминающих устройств, ячеек памяти, дешифраторов, схем управления;

б) для микропроцессоров и микроконтроллеров – ИО запоминающих устройств, регистров, АЦП, ЦАП и построенных на их основе функциональных блоков;

в) для программируемых логических интегральных схем – ИО, входящих в них блоков разного функционального назначения - конфигурируемых логических блоков, блоков входа/выхода, ячеек памяти, JTAG и построенных на их основе функциональных блоков.

3.Предложена методика проверки рассчитанных значений ИО функциональных узлов.

4. Применение методики проверки, рассчитаныых значений ИО функциональных узлов интегральных схем, показало адекватность предложенного подхода для оценки ИО.

Приложение

Блок-схема расчета интенсивности отказов функциональных узлов ПЛИС

Литература

Porter D.C, Finke W.A. Reability characterization an prediction of IC. PADS-TR-70, p.232.

Military Handbook 217F. “Reability prediction of electronic equipment”. Department of Defence, Washington, DC 20301.

“Автоматизированная система расчета надежности”, разработана 22ЦНИИИ МО РФ при участии РНИИ “Электронстандарт” и АО “Стандартэлектро”, 2006г.

“Полупроводниковые запоминающие устройства и их применение”, В.П.Андреев, В.В.Баранов, Н.В.Бекин и др.; Под редакцией Гордонова. М. Радио и связь. 1981.-344стр.

Перспективы развития вычислительной техники: В. 11 кн.: Справ. пособие/Под редакцией Ю.М.Смирнова. Кн. 7: “Полупроводниковые запоминающие устройства”, А.Б.Акинфиев, В.И.Миронцев, Г.Д.Софийский, В.В.Цыркин. – М.: Высш. шк. 1989. – 160 с.: ил.

“Схемотехника БИС постоянных запоминающих устройств”, О.А.Петросян, И.Я.Козырь, Л.А.Коледов, Ю.И.Щетинин. – М.; Радио и связь, 1987, 304 с.

“Надежность оперативных запоминающих устройств”, ЭВМ, Ленинград, Энергоиздат, 1987г, 168 с.

ТИИЭР, т.75, вып.9, 1987г.

Xilinx. The Programmable Logic. Date Book, 2008 г. http:www.xilinx.com.

“Сектор электронных компонентов”, Россия-2002г-М.: Издательский дом “Додэка-XXI ”, 2002г.

DS00049R-page 61  2001 Microchip Technology Inc .

TMS320VC5416 Fixed-Point Digital Signal Processor, Data Manual, Literature Number SPRS095K.

CD-ROM фирмы Integrated Device Technology.

CD-ROM фирмы Holtec Semiconductor.

“ Обеспечение высокой доступности ”

Цель работы:

Изучить два вида средств поддержания высокой доступнос­ти: обеспечение отказоустойчивости (нейтрализация отказов, живу­честь) и обеспечение безопасного и быстрого восстановления после отказов (обслуживаемость). Получить навык работы по обеспечению высокой доступности.

1. Теоретическое введение

1.1. Доступность

1.11. Основные понятия

Информационная система предоставляет своим пользователям определенный набор услуг (сервисов). Говорят, что обеспечен нужный уровень доступности этих сервисов, если следующие показатели находятся в заданных пределах:

Эффективность услуг. Эффективность услуги определяется в терминах максимального времени обслуживания запроса, количества поддерживаемых пользователей и т.п. Требуется, чтобы эффективность не опускалась ниже заранее установленного порога.

Время недоступности. Если эффективность информационной услуги не удовлетворяет наложенным ограничениям, услуга считается недоступной. Требуется, чтобы максимальная продолжительность периода недоступности и суммарное время недоступности за некоторой период (месяц, год) не превышали заранее заданных пределов.

В сущности, требуется, чтобы информационная система почти всегда работала с нужной эффективностью. Для некоторых критически важных систем (например, систем управления) время недоступности должно быть нулевым, без всяких "почти". В таком случае говорят о вероятности возникновения ситуации недоступности и требуют, чтобы эта вероятность не превышала заданной величины. Для решения данной задачи создавались и создаются специальные отказоустойчивые системы, стоимость которых, как правило, весьма высока.

К подавляющему большинству коммерческих систем предъявляются менее жесткие требования, однако современная деловая жизнь и здесь накладывает достаточно суровые ограничения, когда число обслуживаемых пользователей может измеряться тысячами, время ответа не должно превышать нескольких секунд, а время недоступности - нескольких часов в год.

Задачу обеспечения высокой доступности необходимо решать для современных конфигураций, построенных в технологии клиент/сервер. Это означает, что в защите нуждается вся цепочка - от пользователей (возможно, удаленных) до критически важных серверов (в том числе серверов безопасности).

Основные угрозы доступности были рассмотрены нами ранее.

В соответствии с ГОСТ 27.002, под отказом понимается событие, которое заключается в нарушении работоспособности изделия. В контексте данной работы изделие - это информационная система или ее компонент.

В простейшем случае можно считать, что отказы любого компонента составного изделия ведут к общему отказу, а распределение отказов во времени представляет собой простой пуассоновский поток событий. В таком случае вводят понятие интенсивности отказов и среднего времени наработки на отказ, которые связаны между собой соотношением

i - номер компонента,

Интенсивность отказов,

Среднее время наработки на отказ.

Интенсивности отказов независимых компонентов складываются:

а среднее время наработки на отказ для составного изделия задается соотношением

Уже эти простейшие выкладки показывают, что если существует компонент, интенсивность отказов которого много больше, чем у остальных, то именно он определяет среднее время наработки на отказ всей информационной системы. Это является теоретическим обоснованием принципа первоочередного укрепления самого слабого звена.

Пуассоновская модель позволяет обосновать еще одно очень важное положение, состоящее в том, что эмпирический подход к построению систем высокой доступности не может быть реализован за приемлемое время. При традиционном цикле тестирования/отладки программной системы по оптимистическим оценкам каждое исправление ошибки приводит к экспоненциальному убыванию (примерно на половину десятичного порядка) интенсивности отказов. Отсюда следует, что для того, чтобы на опыте убедиться в достижении необходимого уровня доступности, независимо от применяемой технологии тестирования и отладки, придется потратить время, практически равное среднему времени наработки на отказ. Например, для достижения среднего времени наработки на отказ 105 часов потребуется более 104,5 часов, что составляет более трех лет. Значит, нужны иные методы построения систем высокой доступности, методы, эффективность которых доказана аналитически или практически за более чем пятьдесят лет развития вычислительной техники и программирования.

Пуассоновская модель применима в тех случаях, когда информационная система содержит одиночные точки отказа, то есть компоненты, выход которых из строя ведет к отказу всей системы. Для исследования систем с резервированием применяется иной формализм.

В соответствии с постановкой задачи будем считать, что существует количественная мера эффективности предоставляемых изделием информационных услуг. В таком случае вводятся понятия показателей эффективности отдельных элементов и эффективности функционирования всей сложной системы.

В качестве меры доступности можно принять вероятность приемлемости эффективности услуг, предоставляемых информационной системой, на всем протяжении рассматриваемого отрезка времени. Чем большим запасом эффективности располагает наличии избыточности в конфигурации системы вероятность того, что в система, тем выше ее доступность.

При рассматриваемый промежуток времени эффективность информационных сервисов не опустится ниже допустимого предела, зависит не только от вероятности отказа компонентов, но и от времени, в течение которого они остаются неработоспособными, поскольку при этом суммарная эффективность падает, и каждый следующий отказ может стать фатальным. Чтобы максимально увеличить доступность системы, необходимо минимизировать время неработоспособности каждого компонента. Кроме того, следует учитывать, что, вообще говоря, ремонтные работы могут потребовать понижения эффективности или даже временного отключения работоспособных компонентов; такого рода влияние также необходимо минимизировать.

Несколько терминологических замечаний. Обычно в литературе по теории надежности вместо доступности говорят о готовности (в том числе о высокой готовности). Мы предпочли термин "доступность", чтобы подчеркнуть, что информационный сервис должен быть не просто "готов" сам по себе, но доступен для своих пользователей в условиях, когда ситуации недоступности могут вызываться причинами, на первый взгляд не имеющими прямого отношения к сервису (пример - отсутствие консультационного обслуживания).

Далее, вместо времени недоступности обычно говорят о коэффициенте готовности . Нам хотелось обратить внимание на два показателя - длительность однократного простоя и суммарную продолжительность простоев, поэтому мы предпочли термин "время недоступности" как более емкий.

Интенсивность отказов - отношение плотности распределения вероятности отказов к вероятности безотказной работы объекта:

где - плотность вероятности отказов и - вероятность безотказной работы .

Простыми словами, интенсивность отказов выражает шанс отказать в ближайший момент времени объекта (например, прибора), который уже проработал без отказов определённое время.

Статистически интенсивность отказов есть отношение числа отказавших образцов техники в единицу времени к среднему числу образцов, исправно работающих на интервале :

Где - среднее число исправно работающих образцов

на интервале .

Соотношение (1) для малых следует непосредственно из формулы вероятности безотказной работы (3)

и формулы плотности распределения безотказной работы (частоты отказов) (4)

На основе определения интенсивности отказов (1) имеет место равенство:

Интегрируя (5), получим:

Интенсивность отказов является основным показателем надёжности элементов сложных систем. Это объясняется следующими обстоятельствами:

  • надёжность многих элементов можно оценить одним числом, т.к. интенсивность отказа элементов - величина постоянная;
  • интенсивность отказов нетрудно получить экспериментально.

Опыт эксплуатации сложных систем показывает, что изменение интенсивности отказов большинства количества объектов описывается - образной кривой.

Время можно условно разделить на три характерных участка: 1. Период приработки. 2. Период нормальной эксплуатации. 3. Период старения объекта.

Период приработки объекта имеет повышенную интенсивность отказов, вызванную приработочными отказами, обусловленными дефектами производства, монтажа и наладки. Иногда с окончанием этого периода связывают гарантийное обслуживание объекта, когда устранение отказов производится изготовителем. В период нормальной эксплуатации интенсивность отказов практически остаётся постоянной, при этом отказы носят слуайный характер и появляются внезапно, прежде всего из-за случайных изменений нагрузки, несоблюдения условий эксплуатации, неблагоприятных внешних факторов и т.п. Именно этот период соответствует основному времени эксплуатации объекта. Возрастание интенсивности отказов относится к периоду старения объекта и вызвано увеличением числа отказов из-за износа, старения и других причин, связанных с длительной эксплуатацией. То есть вероятность отказа элемента, дожившего для момента в некотором последующем промежутке времени зависит от значений только на этом промежутке, а следовательно интенсивность отказов - локальный показатель надёжности элемента на данном промежутке времени.