Иногда приходится решать задачу связи электронного устройства с компьютером, будь то просто обмен данными или удалённое управление. Эта статья описывает, как это можно реализовать, используя последовательный порт. Главным его преимуществом является то, что стандартный программный интерфейс Windows (API) позволяет производить непосредственное управление выходными линиями, давая прямой контроль над ними, и имеет функцию ожидания некоторого события, связанного с COM-портом. Также стандарт RS-232, по которому выполнены COM-порты, допускает подключение и отключение кабелей во время работы устройств (hot plug).

Описание

COM-порт (последовательный порт) – двунаправленный интерфейс, передающий данные в последовательном виде (бит за битом) по протоколу RS-232. Это довольно-таки распространённый протокол, применяемый для связи одного устройства (например, компьютера) с другими посредством проводов длиной до 30м. Уровни логических сигналов здесь отличаются от стандартных: уровень логической единицы – от +5 до +15В, уровень логического нуля – от -5 до -15В, что требует дополнительных преобразований схемы, но обеспечивает хорошую помехоустойчивость.

Рассмотрим 9-пинововый разъём (DB-9M). Ниже представлена его распиновка:

№ вывода Наименование Характер сигнала Сигнал
1 DCD Входной Data carrier detect
2 RxD Выходной Transmit data
3 TxD Входной Receive data
4 DTR Выходной Data terminal ready
5 GND - Ground
6 DSR Входной Data set ready
7 RTS Выходной Request to send
8 CTS Входной Clear to send
9 RI Входной Ring indicator

Больше всего нас будут интересовать пины 2 (передача данных),3 (приём данных) и 5 (земля). Это минимальный набор для возможности двухстороннего общения приборов.

Подробно останавливаться на описании протокола не буду. Для этого есть ГОСТ’ы и т.п. Поэтому мы пойдём дальше и поговорим о том, как же управлять этим зверем.

Применение

Как уже говорилось, уровни ЛС RS-232 отличаются от стандартных уровней ТТЛ. Следовательно, нам необходимо как-то преобразовывать величины напряжений. Т.е. сделать 5В из +15В и 0В из -15В (и наоборот). Один из способов (и, наверное, самый простой) – использование специальной микросхемы MAX232. Она проста в понимании и одновременно может преобразовывать два логических сигнала.

Ниже приведена схема её включения:


Думаю, трудностей быть не должно. Это один из вариантов использования этой микросхемы: передача данных с микроконтроллера на ЭВМ и наоборот. Передаваемый сигнал поступает на ножки Tx IN с одной стороны и на Rx IN с другой. Входные сигналы снимаются с Tx OUT и Rx OUT соответственно.

Программирование

Для начала поговорим о программировании портов на низком уровне. Так будет более правильно. Я очень много нервов потратил, разбираясь с этим интерфейсом, пока не начал вникать в принцип его работы на более низком уровне, нежели простая передача символов. Если будет понятно это, значит и с языками высокого уровня проблем не будет.

Ниже представлены адреса COM-портов, с которыми нам придётся работать:

Название порта Адрес IRQ
COM 1 3F8h 4
COM 2 2F8h 3
COM 3 3E8h 4
COM 4 2E8h 3

Они могут различаться. Установить значения можно в настройках BIOS’а. Это базовые адреса. От них же и будут зависеть адреса регистров, отвечающие за работу портов:

Адрес DLAB Чтение/Запись Аббревиатура Название регистра
+ 0 =0 Write Transmitter Holding Buffer
=0 Read Receiver Buffer
=1 Read/Write Divisor Latch Low Byte
+ 1 =0 Read/Write IER Interrupt Enable Register
=1 Read/Write Divisor Latch High Byte
+ 2 - Read IIR Interrupt Identification Register
- Write FCR FIFO Control Register
+ 3 - Read/Write LCR Line Control Register
+ 4 - Read/Write MCR Modem Control Register
+ 5 - Read LSR Line Status Register
+ 6 - Read MSR Modem Status Register
+ 7 - Read/Write Scratch Register

Первая колонка – адрес регистра относительно базового. Например, для COM1: адрес регистра LCR будет 3F8h+3=3FB. Вторая колонка – DLAB (Divisor Latch Access Bit) бит, определяющий разное назначение для одного и того же регистра.. Т.е. он позволяет оперировать 12-ю регистрами, используя всего 8 адресов. Например, если DLAB=1, то, обращаясь по адресу 3F8h, мы будем устанавливать значение младшего байта делителя частоты тактового генератора. Если же DLAB=0, то, обращаясь по тому же адресу, в этот регистр будет записан передаваемый или принятый байт.

“Нулевой” регистр

Ему соответствуют регистры приёма/передачи данных и установки коэффициента делителя частоты генератора. Как уже было сказано выше, если DLAB=0, то регистр используется для записи принимаемых/передаваемых данных, если же он равен 1, то устанавливается значение младшего байта делителя частоты тактового генератора. От значения этой частоты зависит скорость передачи данных. Старший байт делителя записывается в следующую ячейку памяти (т.е. для порта COM1 это будет 3F9h). Ниже приведена зависимость скорости передачи данных от коэффициента делителя:

Interrupt Enable Register (IER)

Если DLAB=0, то он используется как регистр управления прерываниями от асинхронного адаптера, если DLAB=1, то в нём задаётся старший байт делителя частоты тактового генератора.

Interrupt Identification Register (IIR)

Прерывание – это событие, при котором останавливается выполнение основной программы и начинается выполнение процедуры прерываний. Этот регистр определяет тип произошедшего прерывания.

Line Control Register (LCR)

Это управляющий регистр.

Бит 7 1 Divisor Latch Access Bit – задание скорости обмена данными
0 Обычнй режим (управление прерываниями, приём/передача данных)
Бит 6 Имитировать обрыв линии (посылает последовательность из нескольких нулей)
Биты 3 – 5 Бит 5 Бит 4 Бит 3 Выбор чётности
X X 0 No Parity
0 0 1 Odd Parity
0 1 1 Even Parity
1 0 1 High Parity (Sticky)
1 1 1 Low Parity (Sticky)
Бит 2 Кол-во стоп-битов
0 1 стоп-бит
1 2 стоп-бита при 6,7 или 8 бит данных или 1.5 стоп-бита при 5 битах данных.
Биты 0 And 1 Бит 1 Бит 0 Число битов данных
0 0 5 бит
0 1 6 бит
1 0 7 бит
1 1 8 бит

Проверка чётности подразумевает под собой передачу ещё одного бита – бита чётности. Его значение устанавливается таким образом, чтобы в пакете битов общее количество единиц (или нулей) было четно или нечетно, в зависимости от установки регистров порта. Этот бит служит для обнаружения ошибок, которые могут возникнуть при передаче данных из-за помех на линии. Приемное устройство заново вычисляет четность данных и сравнивает результат с принятым битом четности. Если четность не совпала, то считается, что данные переданы с ошибкой.

Стоп-бит означает окончание передачи данных.

Modem Control Register (MCR)

Регистр управления модемом.

Бит Значение
0 Линия DTR
1 Линия RTS.
2 Линия OUT1 (запасная)
3 Линия OUT2 (запасная)
4 Запуск диагностики при входе асинхронного адаптера, замкнутом на его выход.
5-7 Равны 0

Line Status Register (LSR)

Регистр, определяющий состояние линии.

Бит Значение
0 Данные получены и готовы для чтения, автоматически сбрасывается при чтении данных.
1 Ошибка переполнения. Был принят новый байт данных, а предыдущий ещё не был считан программой. Предыдущий байт потерен.
2 Ошибка чётности, сбрасывается после чтения состояния линии.
3 Ошибка синхронизации.
4 Обнаружен запрос на прерывание передачи "BREAK" – длинная строка нулей.
5 Регистр хранения передатчика пуст, в него можно записать новый байт для передачи.
6 Регистр сдвига передатчика пуст. Этот регистр получает данные из регистра хранения и преобразует их в последовательный вид для передачи.
7 Тайм-аут (устройство не связано с компьютером).

Modem Status Register (MSR)

Регистр состояния модема.

Ну вот и всё. Оперируя этими регистрами, можно напрямую общаться с COM-портом, управлять передачей и приёмом данных. Если вам не хочется возиться с памятью, можно воспользоваться уже готовыми компонентами для различных сред программирования: C++, VB, Delphi, Pascal и т.д. Они интуитивно понятны, поэтому, думаю, здесь не стоит заострять на них внимание.

Всех приветствую вновь на страницах своего блога и сегодня хочу рассказать, как подключить com порт usb в Windows . Поговорим, что это такое и для чего используется. Я думаю для начинающих сетевых администраторов, да и просто для продвинутых пользователей это будет интересно, для меня в свое время это было просто какой-то магией, позволяющая настраивать серверное оборудование.

Что подключают через com порт

Через com порт ранее подключали модемы, мышки. Сейчас он используется для соединения с источниками бесперебойного питания, для связи с аппаратными средствами разработки встраиваемых вычислительных систем, спутниковыми ресиверами, кассовыми аппаратами, с приборами систем безопасности объектов, а также с многими прочими устройствами.

С помощью COM-порта можно соединить два компьютера, используя так называемый «нуль-модемный кабель» (см. ниже). Использовался со времен MS-DOS для перекачки файлов с одного компьютера на другой, в UNIX для терминального доступа к другой машине, а в Windows (даже современной) - для отладчика уровня ядра.

Но в сетевом мире через com порт подключаются к консольному порту сетевых устройств (коммутаторов, роутеров, таких брендов как Cisco или Juniper)

Какая схема подключения к коммутаторам через последовательный порт. Есть переходники, например от фирмы st-lab На одном конце USB который вы подключаете к компьютеру, а второй это com порт.

Установка драйверов com порт usb в Windows

К сожалению в Windows подключенные устройства, usb to com не всегда автоматически устанавливаются в системе, и приходится искать для них драйвера. Если вы покупали его сами, то в комплекте шел диск с драйверами, и можно воспользоваться им, если его нет, то смотрим как найти драйвера.

Открываем диспетчер устройств в Windows. Если не знаете как, то нажмите CTR+Pause breake, либо нажмите Win+R и в окне выполнить введите devmgmt.msc. Как видите у меня в разделе Порты (COM и LPT) нашелся на третьем COM порту неизвестный провод, и драйверов для него не нашлось у системы, о чем говорит нам желтый значок.

Переходим в свойства данного устройства и выбираем ИД оборудования, у вас будет, что то по типу usb\VID_067B&PID_2303&REV_0300, вот его вы копируете и ищите в гугле или яндексе.

После чего щелкаем правым кликом по устройству в диспетчере устройств и выбираете установить драйвера, указываете до них путь и ставите, если все ок, то у вас пропадет значок предупреждения.

Далее вы уже можете использовать возможности com порта, с помощью таких утилит на подобие Putty, где вы выбираете пункт Serial и указываете нужный порт Com порта, посмотреть его можно в том же диспетчере устройств.

Надеюсь вы научились и разобрались как подключать com порт usb в Windows.

Вот мы и добрались до COM порта. Но с ним все не так просто как с LPT, и его полноценное использование потребует значительно больших усилий. Главной загвоздкой является и его главное преимущество - передача данных в последовательном виде. Если в LPT байт данных передается по 8-ми линиям по биту на каждую, и состояние каждой линии можно было легко посмотреть, то в COM порту байт данных передается бит за битом по одной линии (относительно земли, конечно) и посмотреть что там передается с помощью одних светодиодов не удастся. Для этого нужно специальное устройство - преобразователь потока последовательных данных в парраллельный, т.н. USART (Universal Synchronous/Asynchronous Receiver Transmitter). Например, он есть в составе материнской платы компьютера, снабженного COM портом, в любом более мение серьезном микроконтроллере.


Надеюсь, вы еще пали духом в освоении COM порта. Все не так уж и мрачно. Некоторые результаты можно получить и без USART. Сформулируем задачу, которую реализуем на начальном этапе работы с COM портом:


"Хочу что бы к компьютеру через COM порт подключался светодиод. Запускаю программу. Далаю какое-то действие в этой программе, светодиод загорается, делаю другое - светодиод тухнет."


Задача довольно специфичная (с учетом того, что USART не используется) и является чистой "самопальщиной", но вполне реализуема и работоспособна. Давайте приступим к ее реализации.


1. COM порт

Опять берем системный блок вашего ПК и смотрим в тыловую часть. Примечаем там 9-ти штырьковй разъем - это и есть COM порт. Реально их может быть неколько (до 4-х). На моем ПК установлено два COM порта (см. фото).


2. Удлинитель COM порта


3. Аппаратная часть

С аппаратной частью нам тоже придется "повозиться", в том смысле что она будет сложнее чем с первым устройством для LPT порта. Дело в том что протокол RS-232 по которому идет обмен данными в COM порту, имеет несколько отличное соотношение логическое состояние - напряжение. Если обычно это логический 0 0 В, логическая 1 +5 В, то в RS-232 это соотношение следующее: логический 0 +12 В, логическая 1 -12 В.

И например, получив -12 В не сразу понятно что с этим напряжением делать. Обычно проводят преобразование уровней RS-232 в ТТЛ (0, 5 В). Самый простой вариант - стабилитроны. Но я предлагаю сделать этот преобразователь на специальной микросхеме. Называется она MAX232.

Теперь давайте посмотрим, а какие сигналы из COM порта мы можем посмотреть на светодиодах? В действительности, в COM порту есть аж 6 независимых линий, представляющих интерес для разработчика устройств сопряжения. Две из них пока для нас недоступны - линии по передаче последовательных данных. А вот оставшиеся 4 предназначены для управления и индикации процесса передачи данных и мы сможем "передалать" их под свои нужды. Две из них предназначены для управления со стороны внешнего устройства и мы их пока трогать не будем, а вот последние две оставшиеся линии мы сейчас и поиспользуем. Они называются:

  • RTS - Запрос на передачу. Линия взаимодействия, которая показывает, что компьютер готов к приему данных.
  • DTR - Компьютер готов. Линия взаимодействия, которая показывает, что компьютер включен и готов к связи.

Сейчас мы немного передалаем их назначение, и светодиоды, подключенные к ним будут либо тухнуть либо загораться, в зависимости от действий в нашей собственной программе.

Итак, давайте соберем схему, которая позволит нам проводить задуманные действия.

А вот ее практичекая реализация. Я думаю вы меня простите, что я сделал ее в таком стремном макетном варианте, ибо делать плату для такой "высоко продуктивной" схемы не хочется.


4. Программная часть

Тут все попроще. Давайте создадим Windows приложение в Microsoft Visual C++ 6.0 на основе MFC для управления двумя линиями взаимодействия COM порта. Для этого создаем новый проект MFC и указываем ему имя, например, TestCOM . Далее выбираем вариант построения на основе диалога.

Придайте внешний вид окну диалога нашей программы, как на рис. ниже, а именно добавьте четыре кнопки, по две на каждую из линий. Одна из них соответственно необходима для того чтобы "погасить" линию, другая чтобы ее "установить" в еденицу.

Class CTestCOMDlg: public CDialog { // Construction public: CTestCOMDlg(CWnd* pParent = NULL); // standard constructor HANDLE hFile;

Чтобы наша программа могла упрявлять линиями COM порта, его надо сначала открыть. Напишем код, ответственный за открытие порта при загрузке программы.

HFile = CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,NULL); if(hFile==INVALID_HANDLE_VALUE) { MessageBox("Не удалось открыть порт!", "Ошибка", MB_ICONERROR); } else { MessageBox("Порт успешно открыт", "Ok", MB_OK); }

С помощью стандарной функции Win API CreateFile() открываем COM-порт COM2 . Далее проверяем успешность открытия с выводом информационного сообщения. Вот тут надо сделать важное замечание: COM2 - это в моем компьютере, а на Вашем компьютере Вы могли подключить его к другому COM порту. Соответственно, его имя нужно изменить на то, кокай порт Вы используете. Посмотреть, какие номера портов присутствуют на Вашем компьютере, можно так: Пуск -> Настройка -> Панель управления -> Система -> Оборудование -> Диспетчер устройств -> Порты (COM и LPT) .

В итоге, функция CTestCOMDlg::OnInitDialog() , расположенная в файле TestCOMDlg.cpp , класса нашего диалога должна принять вид:

BOOL CTestCOMDlg::OnInitDialog() { CDialog::OnInitDialog(); // Add "About..." menu item to system menu. // IDM_ABOUTBOX must be in the system command range. ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); ASSERT(IDM_ABOUTBOX AppendMenu(MF_SEPARATOR); pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); } } // Set the icon for this dialog. The framework does this automatically // when the application"s main window is not a dialog SetIcon(m_hIcon, TRUE); // Set big icon SetIcon(m_hIcon, FALSE); // Set small icon // TODO: Add extra initialization here hFile = CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0,NULL); if(hFile==INVALID_HANDLE_VALUE) { MessageBox("Не удалось открыть порт!", "Оштбка", MB_ICONERROR); } else { MessageBox("Порт успешно открыт", "Ok", MB_OK); } return TRUE; // return TRUE unless you set the focus to a control }

Теперь добавим обработчики кнопок управления линиями. Я дал им соответствующие имена: функция, которая устанавливает еденицу на линии DTR - OnDTR1(), 0 - OnDTR0(). Для линии RTS соответственно аналогичным образом. Напомню, что обработчик создается при двойном щелчке на кнопке. В итоге, эти четыре функции должны принять вид:

Void CTestCOMDlg::OnDTR1() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 6); } void CTestCOMDlg::OnDTR0() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 5); } void CTestCOMDlg::OnRTS1() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 4); } void CTestCOMDlg::OnRTS0() { // TODO: Add your control notification handler code here EscapeCommFunction(hFile, 3); }

Поясню немного как они работают. Как видно, внитри себя они содержат вызов одной и той же Win API функции EscapeCommFunction() с двумя параметрами. Первый из них - это хэндл (HANDLE) на открытый порт, второй - специальный код действия, соответствующий необходимому состоянию линии.

Все, комилируем, запускаем. Если все хорошо, должны увидеть сообщение об успешном открытии порта. Далее, нажатием соответствующих кнопок мигаем светодиодами, подключенными к COM порту.

© Иванов Дмитрий
Декабрь 2006

Для связи микроконтроллера с компьютером чаще всего применяют COM-порт. В этой статье мы покажем, как передать команды управления из компьютера и передать данные с контроллера.

Подготовка к работе

Большинство микроконтроллеров обладают множеством портов ввода-вывода. Для связи с ПК наиболее пригоден из них протокол UART. Это протокол последовательной асинхронной передачи данных. Для его преобразования в интерфейс USB на плате есть конвертор USB-RS232 – FT232RL.
Для выполнения примеров их этой статьи вам будет достаточно только Arduino-совместимая плата. Мы используем . Убедитесь, что на вашей плате установлен светодиод, подключенный к 13му выводу и есть кнопка для перезагрузки.

Для примера загрузим на плату код, выводящий таблицу ASCII. ASCII представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов.

int symbol = 33 ; void setup() { Serial. begin(9600 ) ; Serial. println(" ASCII Table ~ Character Map " ) ; } void loop() { Serial. write(symbol) ; Serial. print(" , dec: " ) ; Serial. print(symbol) ; Serial. print(" , hex: " ) ; Serial. print(symbol, HEX) ; Serial. print(" , oct: " ) ; Serial. print(symbol, OCT) ; Serial. print(" , bin: " ) ; Serial. println(symbol, BIN) ; if (symbol = = 126 ) { while (true) { continue ; } } symbol+ + ; }

Переменная symbol хранит код символа. Таблица начинается со значения 33 и заканчивается на 126, поэтому изначально переменной symbol присваивается значение 33.
Для запуска работа порта UART служит функция Serial.begin() . Единственный ее параметр – это скорость. О скорости необходимо договариваться на передающей и приемной стороне заранее, так как протокол передачи асинхронный. В рассматриваемом примере скорость 9600бит/с.
Для записи значения в порт используются три функции:

  1. Serial.write() – записывает в порт данные в двоичном виде.
  2. Serial.print() может иметь много значений, но все они служат для вывода информации в удобной для человека форме. Например, если информация, указанная как параметр для передачи, выделена кавычками – терминальная программа выведет ее без изменения. Если вы хотите вывести какое-либо значение в определенной системе исчисления, то необходимо добавить служебное слово: BIN-двоичная, OCT – восьмеричная, DEC – десятичная, HEX – шестнадцатеричная. Например, Serial.print(25,HEX) .
  3. Serial.println() делает то же, что и Serial.print() , но еще переводит строку после вывода информации.

Для проверки работы программы необходимо, чтобы на компьютере была терминальная программа, принимающая данные из COM-порта. В Arduino IDE уже встроена такая. Для ее вызова выберите в меню Сервис->Монитор порта. Окно этой утилиты очень просто:

Теперь нажмите кнопку перезагрузки. МК перезагрузится и выведет таблицу ASCII:

Обратите внимание на вот эту часть кода:

if (symbol = = 126 ) { while (true) { continue ; } }

Она останавливает выполнение программы. Если вы ее исключите – таблица будет выводиться бесконечно.
Для закрепления полученных знаний попробуйте написать бесконечный цикл, который будет раз в секунду отправлять в последовательный порт ваше имя. В вывод добавьте номера шагов и не забудьте переводить строку после имени.

Отправка команд с ПК

Прежде чем этим заниматься, необходимо получить представление относительного того, как работает COM-порт.
В первую очередь весь обмен происходит через буфер памяти. То есть когда вы отправляете что-то с ПК устройству, данные помещаются в некоторый специальный раздел памяти. Как только устройство готово – оно вычитывает данные из буфера. Проверить состояние буфера позволяет функция Serial.avaliable() . Эта функция возвращает количество байт в буфере. Чтобы вычитать эти байты необходимо воспользоваться функцией Serial.read() . Рассмотрим работу этих функций на примере:

int val = 0 ; void setup() { Serial. begin(9600 ) ; } void loop() { if (Serial. available() > 0 ) { val = Serial. read() ; Serial. print(" I received: " ) ; Serial. write(val) ; Serial. println() ; } }

После того, как код будет загружен в память микроконтроллера, откройте монитор COM-порта. Введите один символ и нажмите Enter. В поле полученных данных вы увидите: “I received: X” , где вместо X будет введенный вами символ.
Программа бесконечно крутится в основном цикле. В тот момент, когда в порт записывается байт функция Serial.available() принимает значение 1, то есть выполняется условие Serial.available() > 0 . Далее функция Serial.read() вычитывает этот байт, тем самым очищая буфер. После чего при помощи уже известных вам функций происходит вывод.
Использование встроенного в Arduino IDE монитора COM-порта имеет некоторые ограничения. При отправке данных из платы в COM-порт вывод можно организовать в произвольном формате. А при отправке из ПК к плате передача символов происходит в соответствии с таблицей ASCII. Это означает, что когда вы вводите, например символ “1”, через COM-порт отправляется в двоичном виде “00110001” (то есть “49” в десятичном виде).
Немного изменим код и проверим это утверждение:

int val = 0 ; void setup() { Serial. begin(9600 ) ; } void loop() { if (Serial. available() > 0 ) { val = Serial. read() ; Serial. print(" I received: " ) ; Serial. println(val, BIN) ; } }

После загрузки, в мониторе порта при отправке “1” вы увидите в ответ: “I received: 110001”. Можете изменить формат вывода и просмотреть, что принимает плата при других символах.

Управление устройством через COM-порт

Очевидно, что по командам с ПК можно управлять любыми функциями микроконтроллера. Загрузите программу, управляющую работой светодиода:

int val = 0 ; void setup() { Serial. begin(9600 ) ; } void loop() { if (Serial. available() > 0 ) { val = Serial. read() ; if (val= = "H" ) digitalWrite(13 , HIGH) ; if (val= = "L" ) digitalWrite(13 , LOW) ; } }

При отправке в COM-порт символа “H” происходит зажигание светодиода на 13ом выводе, а при отправке “L” светодиод будет гаснуть.
Если по результатам приема данных из COM-порта вы хотите, чтобы программа в основном цикле выполняла разные действия, можно выполнять проверку условий в основном цикле. Например.

COM-порт, или последовательный порт, представляет собой двунаправленный последовательный интерфейс, который предназначен для обмена байтовыми данными. В первое время этот порт использовали для подключения терминала, а потом для модема и мыши. Сейчас его принято применять для подключения источника а также для связи с обработки вычислительных систем встраиваемого типа.

Использование

Итак, перед тем как подробнее поговорить о том, что такое COM-порт, необходимо заглянуть в прошлое для понимания его значения. Буквально 15 лет назад использовался способ подключения устройств к компьютеру посредством специального стандартного разъема, расположенного на задней панели системного блока с применением специального сериального кабеля RS-232. У этого способа имеется множество недостатков. Такой кабель, по современным меркам, предоставляет крайне низкую скорость передачи данных - примерно сотню килобит в секунду. Помимо того, когда производилось физическое соединение разъемов, необходимо было осуществлять выключение оборудования, а сами они крепились друг к другу при помощи винтов, обеспечивающих надежность, при этом их размеры отличались немалой величиной.

Немного истории

COM-порт на тогдашних компьютерах традиционно носил номер 1 или 2, так как обычно их было не больше двух. Можно было установить дополнительные порты, если в этом возникала необходимость. Когда пользователем производилась настройка программного обеспечения, требовалось не перепутать и правильно установить именно тот, к которому обеспечивалось подключение нужного оборудования. Каждый COM-порт требовал правильной настройки скорости а также ряда иных загадочных параметров, о которых было известно только узкому кругу специалистов. Чтобы подключение аппаратуры было успешным, все необходимые параметры требовалось откуда-то узнать либо экспериментально подобрать, так как в этом случае отсутствовало какое-либо автоматическое конфигурирование. Помимо этого, подключение через COM-порт допускало соединение любого программного обеспечения с произвольным внешним оборудованием, даже совершенно несовместимым, из-за чего в процессе настроек и возникало огромное количество ошибок.

Современность

Сейчас соединение через COM-порт полностью вытеснено более современным методом, который не требует особых знаний для реализации, а именно посредством USB-порта. Этот метод лишен всех недостатков, упомянутых ранее. Однако современные стандарты совместимости соединения всевозможного GPS-оборудования и весьма разнородного программного обеспечения сформировались довольно давно вокруг концепции COM-портов, ставших на текущий момент архаичными.

Это сопряжено с тем, что изначально практически любое оборудование, в том числе и GPS, было внешним, а его соединение с компьютером производилось посредством серийного кабеля, подключенного к одному из аппаратных портов. От пользователя в процессе настройки требовалось правильно подобрать номер порта и скорость трансляции данных по нему. В то время возник основной стандарт передачи данных от GPS-приемника к программе, который теперь называется NMEA-0183. Фактически данный стандарт предписывает всем разработчикам даже современнейшей аппаратуры и программного обеспечения обмениваться данными посредством COM-портов. И все это в условиях того, что на современных компьютерах, а также на КПК, уже давно главным является стандарт USB. А еще одна особенность состоит в том, что в последнее время GPS-приемники все чаще стали устанавливать непосредственно внутрь корпуса устройства, то есть между ним и основным девайсом вообще отсутствует какой-либо соединительный кабель.

Виртуальные КОМ-порты

Выход из положения был придуман, а именно разработаны «виртуальные» COM-порты. Получается, что внутреннее устройство КПК, к примеру, GPS-приемник, программно имитируется в виде COM-порта, при этом в аппаратном плане таковым не являясь. При этом программе, которая рассчитана на сопряжение посредством подобного стандарта, нет разницы, как он реализован. Тут допускается наличие виртуальной имитации, а не обязательное присутствие аппаратной реализации. Так и удается обеспечить совместимость GPS-программ старого образца с современным оборудованием.

Внесенные изменения

При этом управление COM-портом существенно не изменилось. Пользователь по старинке должен производить сложную настройку чуть ли не вручную. Однако современный COM-порт представляет собой уже не то громоздкое приспособление, размещавшееся на задней панели системного блока, а совсем иное устройство. И тут все дело в том, что с программной точки зрения все их реализации выглядят безлико, то есть нет разницы между виртуальными и реальными портами. Для программного обеспечения порты различаются только номерами, которые им присвоены производителями КПК на совершенно случайной основе. К примеру, приемник от ASUS обычно находится на COM5, а PocketLOOX 560 показывает приемник на COM8. Получается, что программа, которая желает получать от GPS-приемника данные, не имеет изначально никакой достоверной информации об условном номере, под которым фигурирует порт, прописанный соответствующим для приемника на данном КПК.

Как все это работает?

При том, что среди всех имеющихся COM-портов можно провести автоматический поиск подходящего, процедура такого опроса является довольно ненадежной и достаточно громоздкой. Связано это с тем, что устройства, отображаемые в системе в качестве COM-портов, могут быть довольно разнообразными и не иметь отношения к GPS, они могут совершенно непредсказуемо ответить на такой опрос. К примеру, на КПК бывают порты, сопряженные с внутренним сотовым модемом, с USB, с инфракрасным портом, а также с иными элементами. Обращение к ним программы, предназначенной для работы с конкретным приспособлением, может привести к совершенно непредсказуемой реакции, а также к различным сбоям в работе, что часто становится причиной зависания КПК. Именно поэтому попытка открыть COM-порт может привести к неожиданным ситуациям вплоть до включения Bluetooth или А могут быть и более непонятные случаи.

Работа COM-порта

Для COM-портов в качестве основы используется микросхема асинхронного универсального приемопередатчика. Эта микросхема существует в нескольких разновидностях: Intel 16550A, 16550, 16450, 8250. Для каждого COM-порта она содержит регистры приемника и передатчика данных, а также ряд управляющих регистров, к которым есть доступ через программы BIOS, Windows и MS DOS. У последних версий микросхемы имеется набор буферов для временного хранения передаваемых и получаемых данных. Благодаря такой возможности можно реже прерывать работу центрального процессора, а также согласовать скорость трансляции данных.

Основные параметры

Устройство COM-порта предполагает наличие таких характерных особенностей:

Базового адреса порта для ввода и вывода информации;

Номера аппаратного прерывания;

Размера одного блока информации;

Скорости, с которой передаются данные;

Режима детектирования честности;

Способа управления потоками информации;

Количества стоповых бит.

Как проверить COM-порт компьютера? На что обратить внимание?

Как уже было сказано ранее, этот тип порта представляет собой двунаправленный интерфейс для на битовом уровне последовательным способом. Отличительной характеристикой в сравнении с параллельным портом тут является передача данных бит за битом. Анатомия COM-порта такова, что на компьютере не он один использует последовательный способ передачи данных. Например, такие интерфейсы, как Ethernet или USB, тоже используют аналогичный принцип, но так сложилось исторически, что последовательным принято называть именно порт стандарта RS232.

Очень часто требуется открыть COM-порт для проведения ремонта и диагностики компьютера, при этом его также необходимо проверить на работоспособность. Сжечь элемент ведь очень просто. Чаще всего это происходит по вине пользователя, который производит отключение устройства неправильно, выдергивая разъем при подключенном интерфейсе. Простейшим способом проверки работоспособности интерфейса является подключение к нему мышки. Однако так сложно получить полную картину, так как манипулятор задействует только половину сигнальных линий из восьми имеющихся. Только использование специальной заглушки и программы позволит провести проверку работоспособности. Для этих целей уже существует специально разработанное программное обеспечение.