Фильтр Калмана

Фильтр Калмана широко используется в инженерных и эконометрических приложениях: от радаров и систем технического зрения до оценок параметров макроэкономических моделей . Калмановская фильтрация является важной частью теории управления , играет большую роль в создании систем управления. Совместно с линейно-квадратичным регулятором фильтр Калмана позволяет решить задачу линейно-квадратичного гауссовского управления . Фильтр Калмана и линейно-квадратичный регулятор - возможное решение большинства фундаментальных задач в теории управления.

В большинстве приложений количество параметров, задающих состояние объекта, больше, чем количество наблюдаемых параметров, доступных для измерения. При помощи модели объекта по ряду доступных измерений фильтр Калмана позволяет получить оценку внутреннего состояния.

Фильтр Калмана предназначен для рекурсивного дооценивания вектора состояния априорно известной динамической системы, то есть для расчёта текущего состояния системы необходимо знать текущее измерение, а также предыдущее состояние самого фильтра. Таким образом, фильтр Калмана, как и множество других рекурсивных фильтров, реализован во временно́м, а не в частотном представлении.

Наглядный пример возможностей фильтра - получение точных, непрерывно обновляемых оценок положения и скорости некоторого объекта по результатам временно́го ряда неточных измерений его местоположения. Например, в радиолокации стоит задача сопровождения цели, определения её местоположения, скорости и ускорения, при этом результаты измерений поступают постепенно и сильно зашумлены. Фильтр Калмана использует вероятностную модель динамики цели, задающую тип вероятного движения объекта, что позволяет снизить воздействие шума и получить хорошие оценки положения объекта в настоящий, будущий или прошедший момент времени.

Введение

Фильтр Калмана оперирует понятием вектора состояния системы (набором параметров, описывающих состояние системы на некоторый момент времени) и его статистическим описанием. В общем случае динамика некоторого вектора состояния описывается плотностями вероятности распределения его компонент в каждый момент времени. При наличии определенной математической модели производимых наблюдений за системой, а также модели априорного изменения параметров вектора состояния (а именно - в качестве марковского формирующего процесса) можно записать уравнение для апостериорной плотности вероятности вектора состояния в любой момент времени. Данное дифференциальное уравнение носит название уравнение Стратоновича. Уравнение Стратоновича в общем виде не решается. Аналитическое решение удается получить только в случае ряда ограничений (предположений):

  • гауссовости априорных и апостериорных плотностей вероятности вектора состояния на любой момент времени (в том числе начальный)
  • гауссовости формирующих шумов
  • гауссовости шумов наблюдений
  • белости шумов наблюдений
  • линейности модели наблюдений
  • линейности модели формирующего процесса (который, напомним, должен являться марковским процессом)

Классический фильтр Калмана является уравнениями для расчета первого и второго момента апостериорной плотности вероятности (в смысле вектора математических ожиданий и матрицы дисперсий, в том числе взаимных) при данных ограничениях. Ввиду того, что для нормальной плотности вероятности математическое ожидание и дисперсионная матрица полностью задают плотность вероятности, можно сказать, что фильтр Калмана рассчитывает апостериорную плотность вероятности вектора состояния на каждый момент времени. А значит полностью описывает вектор состояния как случайную векторную величину.

Расчетные значения математических ожиданий при этом являются оптимальными оценками по критерию среднеквадратической ошибки, что и обуславливает его широкое применение.

Существует несколько разновидностей фильтра Калмана, отличающихся приближениями и ухищрениями, которые приходится применять для сведения фильтра к описанному виду и уменьшения его размерности:

  • Расширенный фильтр Калмана (EKF, Extended Kalman filter). Сведение нелинейных моделей наблюдений и формирующего процесса с помощью линеаризации посредством разложения в ряд Тейлора .
  • Unscented Kalman filter (UKF). Используется в задачах, в которых простая линеаризация приводит к уничтожению полезных связей между компонентами вектора состояния. В этом случае «линеаризация» основана на unscented -преобразовании.
  • Ensemble Kalman filter (EnKF). Используется для уменьшения размерности задачи.
  • Возможны варианты с нелинейным дополнительным фильтром, позволяющим привести негауссовские наблюдения к нормальным.
  • Возможны варианты с «обеляющим» фильтром, позволяющим работать с «цветными» шумами
  • и т. д.

Используемая модель динамической системы

Фильтры Калмана базируются на дискретизированных по времени линейных динамических системах . Такие системы моделируются цепями Маркова при помощи линейных операторов и слагаемых с нормальным распределением . Состояние системы описывается вектором конечной размерности - вектором состояния . В каждый такт времени линейный оператор действует на вектор состояния и переводит его в другой вектор состояния (детерминированное изменение состояния), добавляется некоторый вектор нормального шума (случайные факторы) и в общем случае вектор управления, моделирующий воздействие системы управления. Фильтр Калмана можно рассматривать как аналог скрытым моделям Маркова , с тем отличием, что переменные, описывающие состояние системы, являются элементами бесконечного множества действительных чисел (в отличие от конечного множества пространства состояний в скрытых моделях Маркова). Кроме того, скрытые модели Маркова могут использовать произвольные распределения для последующих значений вектора состояния, в отличие от фильтра Калмана, использующего модель нормально распределенного шума. Существует строгая взаимосвязь между уравнениями фильтра Калмана и скрытой модели Маркова. Обзор этих и других моделей дан Roweis и Chahramani (1999) .

При использовании фильтра Калмана для получения оценок вектора состояния процесса по серии зашумленных измерений необходимо представить модель данного процесса в соответствии со структурой фильтра - в виде матричного уравнения определенного типа. Для каждого такта k работы фильтра необходимо в соответствии с приведенным ниже описанием определить матрицы: эволюции процесса F k ; матрицу наблюдений H k ; ковариационную матрицу процесса Q k ; ковариационную матрицу шума измерений R k ; при наличии управляющих воздействий - матрицу их коэффициентов B k .

Иллюстрация работы фильтра. Квадратами помечены матрицы . Эллипсами помечены матрицы многомерных нормальных распределений (включая средние значения и ковариации). Не обведёнными оставлены векторы . В простейшем случае некоторые матрицы не изменяются во времени (не зависят от индекса k ), но всё равно используются фильтром в каждый такт работы.

Модель системы/процесса подразумевает, что истинное состояние в момент k получается из истинного состояния в момент k −1 в соответствии с уравнением:

,
  • F k - матрица эволюции процесса/системы, которая воздействует на вектор x k −1 (вектор состояния в момент k −1 );
  • B k - матрица управления, которая прикладывается к вектору управляющих воздействий u k ;
  • w k - нормальный случайный процесс с нулевым математическим ожиданием и ковариационной матрицей Q k , который описывает случайный характер эволюции системы/процесса:

В момент k производится наблюдение (измерение) z k истинного вектора состояния x k , которые связаны между собой уравнением:

где H k - матрица измерений, связывающая истинный вектор состояния и вектор произведенных измерений, v k - белый гауссовский шум измерений с нулевым математическим ожиданием и ковариационной матрицей R k :

Начальное состояние и векторы случайных процессов на каждом такте {x 0 , w 1 , …, w k , v 1 , …, v k } считаются независимыми .

Многие реальные динамические системы нельзя точно описать данной моделью. На практике неучтённая в модели динамика может серьёзно испортить рабочие характеристики фильтра, особенно при работе с неизвестным стохастическим сигналом на входе. Более того, неучтённая в модели динамика может сделать фильтр неустойчивым . С другой стороны, независимый белый шум в качестве сигнала не будет приводить к расхождению алгоритма. Задача отделения шумов измерений от неучтенной в модели динамики сложна, решается она с помощью теории робастных систем управления .

Фильтр Калмана

Фильтр Калмана является разновидностью рекурсивных фильтров . Для вычисления оценки состояния системы на текущий такт работы ему необходима оценка состояния (в виде оценки состояния системы и оценки погрешности определения этого состояния) на предыдущем такте работы и измерения на текущем такте. Данное свойство отличает его от пакетных фильтров, требующих в текущий такт работы знание истории измерений и/или оценок. Далее под записью будем понимать оценку истинного вектора в момент n с учетом измерений с момента начала работы и по момент m включительно.

Состояние фильтра задается двумя переменными:

Итерации фильтра Калмана делятся на две фазы: экстраполяция и коррекция. Во время экстраполяции фильтр получает предварительную оценку состояния системы (в русскоязычной литературе часто обозначается , где означает «экстраполяция», а k - номер такта, на котором она получена) на текущий шаг по итоговой оценке состояния с предыдущего шага (либо предварительную оценку на следующий такт по итоговой оценке текущего шага, в зависимости от интерпретации). Эту предварительную оценку также называют априорной оценкой состояния, так как для её получения не используются наблюдения соответствующего шага. В фазе коррекции априорная экстраполяция дополняется соответствующими текущими измерениями для коррекции оценки. Скорректированная оценка также называется апостериорной оценкой состояния, либо просто оценкой вектора состояния . Обычно эти две фазы чередуются: экстраполяция производится по результатам коррекции до следующего наблюдения, а коррекция производится совместно с доступными на следующем шаге наблюдениями, и т. д. Однако возможно и другое развитие событий, если по некоторой причине наблюдение оказалось недоступным, то этап коррекции может быть пропущен и выполнена экстраполяция по нескорректированной оценке (априорной экстраполяции). Аналогично, если независимые измерения доступны только в отдельные такты работы, всё равно возможны коррекции (обычно с использованием другой матрицы наблюдений H k ).

Этап экстраполяции

Этап коррекции

Отклонение полученного на шаге k наблюдения от наблюдения, ожидаемого при произведенной экстраполяции:
Ковариационная матрица для вектора отклонения (вектора ошибки):
Оптимальная по Калману матрица коэффициентов усиления, формирующаяся на основании ковариационных матриц имеющейся экстраполяции вектора состояния и полученных измерений (посредством ковариационной матрицы вектора отклонения):
Коррекция ранее полученной экстраполяции вектора состояния - получение оценки вектора состояния системы:
Расчет ковариационной матрицы оценки вектора состояния системы:

Выражение для ковариационной матрицы оценки вектора состояния системы справедливо только при использовании приведенного оптимального вектора коэффициентов. В общем случае это выражение имеет более сложный вид.

Инварианты

Если модель абсолютно точна и абсолютно точно заданы начальные условия и , то следующие величины сохраняются после любого количества итераций работы фильтра - являются инвариантами:

Математические ожидания оценок и экстраполяций вектора состояния системы, матрицы ошибок являются нуль-векторами:

где - математическое ожидание .

Расчетные матрицы ковариаций экстраполяций, оценок состояния системы и вектора ошибок совпадают с истинными матрицами ковариаций:

Пример построения фильтра

Представим себе вагонетку , стоящую на бесконечно длинных рельсах при отсутствии трения . Изначально она покоится в позиции 0, но под действием случайных факторов на неё действует случайное ускорение . Мы измеряем положение вагонетки каждые ∆t секунд, но измерения неточны. Мы хотим получать оценки положения вагонетки и её скорости. Применим к этой задаче фильтр Калмана, определим все необходимые матрицы.

В данной задаче матрицы F , H , R и Q не зависят от времени, опустим их индексы. Кроме того, мы не управляем вагонеткой, поэтому матрица управления B отсутствует.

Координата и скорость вагонетки описывается вектором в линейном пространстве состояний

где - скорость (первая производная координаты по времени).

Будем считать, что между (k −1 )-ым и k -ым тактами вагонетка движется с постоянным ускорением a k , распределенным по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением σ a . В соответствии с механикой Ньютона можно записать

.

Ковариационная матрица случайных воздействий

(σ a - скаляр).

На каждом такте работы производится измерение положения вагонетки. Предположим, что погрешность измерений v k имеет нормальное распределение с нулевым математическим ожиданием и среднеквадратическим отклонением σ z . Тогда

и ковариационная матрица шума наблюдений имеет вид

.

Начальное положение вагонетки известно точно

, .

Если же положение и скорость вагонетки известна лишь приблизительно, то можно инициализировать матрицу дисперсий достаточно большим числом L , чтобы при этом число превосходило дисперсию измерений координаты

, .

В этом случае на первых тактах работы фильтр будет с бо́льшим весом использовать результаты измерений, чем имеющуюся априорную информацию.

Вывод формул

Ковариационная матрица оценки вектора состояния

По определению ковариационной матрицы P k |k

подставляем выражение для оценки вектора состояния

и расписываем выражение для вектора ошибок

и вектора измерений

выносим вектор погрешности измерений v k

так как вектор погрешности измерений v k не коррелирован с другими аргументами, получаем выражение

в соответствии со свойствами ковариации векторов данное выражение преобразуется к виду

заменяя выражение для ковариационной матрицы экстраполяции вектора состояния на P k |k −1 и определение ковариационной матрицы шумов наблюдений на R k , получаем

Полученное выражение справедливо для произвольной матрицы коэффициентов, но если в качестве неё выступает матрица коэффициентов, оптимальная по Калману, то данное выражение для ковариационной матрицы можно упростить.

Оптимальная матрица коэффициентов усиления

Фильтр Калмана минимизирует сумму квадратов математических ожиданий ошибок оценки вектора состояния.

Вектор ошибки оценки вектора состояния

Стоит задача минимизировать сумму математических ожиданий квадратов компонент данного вектора

,

что эквивалентно минимизации следа ковариационной матрицы оценки вектора состояния P k |k . Подставим в выражение для ковариационной матрицы оценки вектора состояния имеющиеся выражения и дополним до полного квадрата:

Заметим что, последнее слагаемое является ковариационной матрицей некоторой случайной величины, поэтому его след неотрицателен. Минимум следа достигнется при обнулении последнего слагаемого:

Утверждается, что данная матрица является искомой и при использовании в качестве матрицы коэффициентов в фильтре Калмана минимизирует сумму средних квадратов ошибок оценки вектора состояния.

Ковариационная матрица оценки вектора состояния при использовании оптимальной матрицы коэффициентов

Выражение для ковариационной матрицы оценки вектора состояния P k |k при использовании оптимальной матрицы коэффициентов примет вид:

Данная формула вычислительно проще и поэтому практически всегда используется на практике, но она корректна только при использовании оптимальной матрицы коэффициентов. Если ввиду малой вычислительной точности возникает проблема с вычислительной устойчивостью, либо специально используется матрица коэффициентов, отличная от оптимальной, следует использовать общую формулу для ковариационной матрицы оценки вектора состояния.


Этот фильтр применяют в разных областях – от радиотехники до экономики. Здесь мы обсудим основную идею, смысл, суть данного фильтра. Излагаться она будет максимально простым языком.
Предположим, что у нас есть необходимость в измерениях некоторых величин некоего объекта. В радиотехнике чаще всего имеют дело с измерениями напряжений на выходе некоего устройства (датчика, антенны и т.д.). В примере с электрокардиографом (см. ) мы имеем дело с измерениями биопотенциалов на теле человека. В экономике, например, измеряемой величиной могут быть курсы валют. Каждыё день курс валют разный, т.е. каждый день “его измерения” дают нам разную величину. А если обобщать, то можно сказать, что большая часть деятельности человека (если не вся) сводится именно к постоянным измерениям-сравнениям тех или иных величин (см. книгу).
Итак, предположим, что мы что-то постоянно измеряем. Так же предположим, что наши измерения всегда идут с некоторой ошибкой – оно и понятно, ведь нет идеальных измерительных приборов, и каждый выдаёт результат с ошибкой. В простейшем случае описанное можно свести к следующему выражению: z=x+y, где x – истинное значение, которое мы хотим измерить и которое измерили бы если бы у нас был идеальный измерительный прибор, y – ошибка измерения, вносимая измерительным прибором, а z – измеренная нами величина. Так вот задача фильтра Калмана состоит в том, чтобы по измеренной нами z всё-таки догадаться (определить), а какое же истинное значение x было, когда мы получали нашу z (в которой "сидит" истинное значение и ошибка измерения). Необходимо отфильтровать (отсеять) из z истинное значение x – убрать из z искажающий шум y. То есть, имея на руках только лишь сумму нам необходимо догадаться о том, какие слагаемые дали эту сумму.
В свете вышеописанного сформулируем теперь всё следующим образом. Пусть есть всего лишь два случайных числа. Нам даётся только их сумма и от нас требуется по этой сумме определить, какими являются слагаемые. Например, нам дали число 12 и говорят: 12 – это сумма чисел x и y, вопрос – чему равны x и y. Чтобы ответить на этот вопрос, составляем уравнение: x+y=12. Мы получили одно уравнение с двумя неизвестными, поэтому, строго говоря, найти два числа которые и дали эту сумму не возможно. Но кое-что об этих числах мы всё-таки можем сказать. Мы можем сказать, что это были либо числа 1 и 11, либо 2 и 10, либо 3 и 9, либо 4 и 8 и т.д., также это либо 13 и -1, либо 14 и -2, либо 15 и -3 и т.д. То есть мы можем по сумме (в нашем примере 12) определить множество возможных вариантов, которые дают в сумме именно 12. Один из этих вариантов – это искомая нами пара, которая на самом деле прямо сейчас и дала 12. Нелишне так же отметить, что все варианты пар чисел дающих в сумме 12 образуют прямую, изображённую на рис.1, которая и задаётся уравнением x+y=12 (y=-x+12).

Рис.1

Таким образом, искомая нами пара лежит где-то на этой прямой. Повторюсь, выбрать из всех этих вариантов ту пару, которая была на самом деле – которая дала число 12, не владея какими-либо дополнительными подсказками, невозможно. Однако, в ситуации, для которой изобретён фильтр Калмана, такие подсказки есть . Там заранее о случайных числах кое-что известно. В частности там известна так называемая гистограмма распределения для каждой пары чисел. Она обычно бывает получена после достаточно длительных наблюдений за выпадениями этих самых случайных чисел. То есть, например, из опыта известно, что в 5% случаев обычно выпадает пара x=1, y=8 (обозначим эту пару так: (1,8)), в 2% случаев пара x=2, y=3 (2,3), в 1% случаев пара (3,1), в 0.024% случаев пара (11,1) и т.д. Повторюсь, эта гистограмма задана для всех пар чисел, в том числе и для тех, что образуют в сумме 12. Таким образом, для каждой пары, что даёт в сумме 12, мы можем сказать, что, например, пара (1, 11) выпадает в 0.8% случаев, пара (2, 10) – в 1% случаев, пара (3, 9) – в 1.5% случаев и т.д. Таким образом, мы можем по гистограмме определить, в скольких процентах случаев сумма слагаемых пары равна 12. Пусть, например, в 30% случаев сумма даёт 12. А в остальных 70% выпадают остальные пары – это (1,8), (2,3), (3,1) и т.д. – те, что в сумме дают числа отличные от 12. Причём пусть, например, пара (7,5) выпадает в 27% случаев в то время, как все остальные пары, что дают в сумме 12, выпадают в 0.024%+0.8%+1%+1.5%+…=3% случаев. Итак, по гистограмме мы выяснили, что числа дающие в сумме 12 выпадают в 30% случаев. При этом мы знаем, что если выпало 12, то чаще всего (в 27% из 30%) причиной этого является пара (7,5). То есть если уже выпало 12, то мы можем сказать, что в 90% (27% из 30% – или, что то же самое 27 раз из каждых 30-ти) причиной выпадения 12 является пара (7,5). Зная, что чаще всего причиной получения суммы равной 12 является пара (7,5) логично предположить, что, скорее всего, она выпала и сейчас. Конечно, всё-таки не факт, что на самом деле сейчас число 12 образовано именно этой парой, однако, в следующие разы, если нам попадётся 12, и мы опять предположим пару (7,5), то где-то в 90% случаев из 100% окажемся правы. А вот если мы будем предполагать пару (2, 10), то окажемся правы лишь в 1% из 30% случаев, что равно 3.33% правильных догадок по сравнению с 90% при предположении пары (7,5). Вот и всё – в этом и состоит смысл алгоритма фильтра Калмана. То есть фильтр Калмана не гарантирует, что не ошибётся в определении слагаемого по сумме, однако он гарантирует, что ошибётся минимальное количество раз (вероятность ошибки будет минимальна), так как использует статистику – гистограмму выпадения пар чисел. Так же необходимо подчеркнуть, что часто в алгоритме фильтрации Калмана используется так называемая плотность распределения вероятности (ПРВ). Однако необходимо понимать, что смысл там тот же, что и у гистограммы. Более того, гистограмма – это функция, построенная на основе ПРВ и являющаяся её приближением (см., например, ).
В принципе мы эту гистограмму можем изобразить в виде функции двух переменных – то есть в виде некоей поверхности над плоскостью xy. Там, где поверхность выше, там выше и вероятность выпадения соответствующей пары. На рис.2 изображена такая поверхность.


рис.2

Как видно над прямой x+y=12 (которая есть варианты пар дающих в сумме 12) расположены точки поверхности на разной высоте и наибольшая высота у варианта с координатами (7,5). И когда нам встречается сумма равная 12, в 90% случаев причиной появления этой суммы является именно пара (7,5). Т.е. именно эта пара, дающая в сумме 12, имеет наибольшую вероятность появления при условии, что сумма равна 12.
Таким образом, здесь описана идея лежащая в основе фильтра Калмана. Именно на ней и построены всевозможные его модификации – одношаговые, многошаговые рекуррентные и т.д. Для более глубокого изучения фильтра Калмана рекомендую книгу: Ван Трис Г. Теория обнаружения, оценок и модуляции.

p.s. Для того, кто интересуется объяснениями понятий математики что называется "на пальцах" можно посоветовать вот эту книгу и в частности главы из её раздела "Математика" (саму книгу или отдельные главы из неё вы можете приобрести ).

Транскрипт

1 # 09, сентябрь 2015 УДК Применение фильтра Калмана для обработки последовательности GPS-координат Листеренко Р.Р., бакалавр Россия, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Программное обеспечение ЭВМ и информационные технологии» Научный руководитель: Бекасов Д.Е., ассистент Россия, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Программное обеспечение ЭВМ и информационные технологии» Задача фильтрации GPS-координат В настоящее время широко используются сервисы GPS-трекинга, задачей которых является отслеживание маршрутов наблюдаемых объектов с целью их сохранения и дальнейшего воспроизведения и анализа. Однако из-за погрешности GPS-датчика, обусловленной рядом причин , таких как потеря сигнала от спутника, изменение геометрии расположения спутников, отражение сигналов, вычислительные ошибки и ошибки округления, итоговый результат не соответствует в точности маршруту объекта. Наблюдаются как незначительные отклонения (в пределах 100 м), не затрудняющие восприятие визуальной информации о маршруте и его анализ, так и весьма значительные (до 1 км, в случае потери сигнала спутников и использования базовых станций до нескольких десятков км). Для демонстрации результата приведенного в статье алгоритма используется маршрут, содержащий отклонения от действительного местоположения, превышающие несколько километров. С целью коррекции таких погрешностей разрабатывается алгоритм, выполняющий преобразование последовательности координат. Входными данными для алгоритма служит последовательность GPS-координат. В каждой координате содержится следующая информация, полученная от датчика: Широта Долгота Азимут в градусах Мгновенная скорость объекта в данной точке в м/с

2 Возможное отклонение координат объекта от истинного значения в метрах Время получения координаты датчиком Результатом работы алгоритма является последовательность координат с скорректированной широтой и долготой. В качестве основы для построения алгоритма решено использовать фильтр Калмана, так как он позволяет отдельно учитывать погрешности измерений и погрешности случайного процесса, а также использовать получаемую от датчика скорость движения объекта . Построение математической модели с использованием фильтра Калмана Для использования фильтра Калмана необходимо, чтобы исследуемый процесс описывался следующим образом : = + + (1) = + (2) В формуле (1) - вектор состояния процесса, A - матрица размерностью n n, описывающая переход наблюдаемого процесса из состояния в состояние. Вектор описывает управляющие воздействия на процесс. Матрица B размерностью n l отображает вектор управляющих воздействий u в изменение состояния s. является случайной величиной, описывающей погрешности исследуемого процесса, причем ~0, где Q - ковариационная матрица погрешностей процесса. Формула (2) описывает измерения случайного процесса. - вектор измеряемого состояния процесса, матрица H размерностью m n отображает состояние процесса в измерение процесса. - случайная величина, характеризующая погрешности измерений, причем ~0, где P - ковариационная матрица погрешностей измерений. Так как исследуется процесс движения объекта, уравнение состояния составляется исходя из уравнения движения тела = + +!" #$ % & ". Кроме того, отсутствует дополнительная информация о процессе движения, поэтому считается, что управляющее воздействие равно 0. За состояние процесса принят вектор = + () *, -. +, где x, y - координаты объекта, - проекции скорости объекта. Таким образом, для рассматриваемого процесса уравнение (1) принимает следующий вид: = + /!, (3) Молодежный научно-технический вестник ФС, ISSN

3 где = ! = 3! + 7 " 0 ; 6 2: 6 " / = : 6 0: 6 2: 6 0: , (4)!,4, (5) (6) В данной модели ускорение объекта рассматривается как случайная погрешность процесса. Принимаются следующие допущения: а) Ускорения по разным осям являются независимыми случайными величинами.),* б)

4 = AB = C. C E. = C/!!. /. = / C!!. /. Так как компоненты вектора ak (5) являются независимыми случайными величинами, то C!!. = " 0 " G. Следовательно, формула (7) принимает следующий вид: = / " (8) Вектор измерения zk для данной задачи представляется следующим образом: H I = 0 + J, J (7) 2, (9) где H, I - координаты объекта, полученные от датчика, J +,J, - скорость объекта, полученная от датчика. Матрица H в формуле (2) принимается равной единичной матрице размерностью 4 4, так как в рамках данной задачи считается, что измерение есть линейная комбинация вектора состояния и некоторых случайных погрешностей. Ковариационная матрица погрешности измерений R считается заданной. Один из возможных вариантов ее вычисления - использование данных о предполагаемой точности измерения, получаемых от датчика. Применение фильтра Калмана к построенной модели Для применения фильтра необходимо ввести следующие понятия: - апостериорная оценка состояния объекта в момент k, полученная по результатам наблюдений вплоть до момента k включительно. L - нескорректированная апостериорная оценка состояния объекта в момент времени k. - апостериорная ковариационная матрица ошибок, задающая оценку точности полученной оценки вектора состояния и включающая в себя оценку дисперсий погрешности вычисленного состояния и ковариации, показывающие выявленные взаимосвязи между параметрами состояния системы. L - нескорректированная апостериорная ковариационная матрица ошибок. Матрица P0 задается как нулевая, так как считается, что известно начальное положение объекта. Молодежный научно-технический вестник ФС, ISSN

5 Одна итерация фильтра Калмана состоит из двух этапов: экстраполяция и коррекция. а) На этапе экстраполяции вычисляется оценка L по оценке вектора состояния L и ковариационная матрица ошибок L по следующим формулам: L =, (10) L =. +, (11) где матрица Ak известна из формулы (4), матрица Qk вычисляется по формуле (8). б) На этапе коррекции вычисляется матрица коэффициентов усиления Kk по следующей формуле: M = L. L. + (12) где R, H считаются известными. Kk используется для коррекции оценки состояния объекта L и ковариационной матрицы ошибок L следующим образом: = L + M L, (13) = N M L, (14) где I - единичная матрица. Следует заметить, что для использования указанных выше соотношений, необходимо, чтобы для параметров объекта, участвующих в вычислениях, единицы измерений были согласованы. Однако в исходных данных широта и долгота приводятся в угловых координатах, а скорость в метрических. Кроме того, ускорение для расчета ошибки процесса также удобнее задавать в метрических единицах. Для перевода скорости и ускорения в угловые единицы используются формулы Винченти . Результат работы фильтра На рис. 1 приведен пример маршрута до обработки. Можно заметить, что в данном примере присутствуют несколько координат с высокой степенью погрешности, что выражается в наличии «пиков» координат, значительно удаленных от основного маршрута. На рис. 2 приведен результат работы фильтра с данным маршрутом.

6 Рис. 1. Маршрут объекта Рис. 2. Маршрут объекта после применения фильтра В результате практически отсутствуют «пики», за исключением самого крупного, который был заметно уменьшен, и сглажена остальная часть маршрута. Таким образом, с помощью приведенного алгоритма удалось снизить степень искажений маршрута и повысить его визуальное качество. Заключение В данной работе был рассмотрен подход к коррекции GPS-координат с помощью фильтра Калмана. С помощью приведенного алгоритма удалось устранить наиболее заметные искажения маршрута, что демонстрирует применимость данного метода к задаче сглаживания маршрута и устранения пиков. Однако для дальнейшего повышения качества алгоритма необходима дополнительная обработка последовательности координат с целью Молодежный научно-технический вестник ФС, ISSN

7 устранения избыточных точек, возникающих при отсутствии движения наблюдаемого объекта. Список литературы 1. Yadav J., Giri R., Meena L. Error handling in GPS data processing // Mausam Vol. 62. No. 1. P Kalman R. E. A New Approach to Linear Filtering and Prediction Problems // Transactions of the ASME Journal of Basic Engineering Vol. 82. No. Series D. PP Welch G., Bishop G. An Introduction to the Kalman Filter: Tech. Rep. TR Available at: accessed Vincenty T. Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of nested equations // Survey Review apr. Vol. 23. No PP


УДК 519.711.2 Алгоритм оценки параметров ориентации космического аппарата с использованием фильтра Калмана Д. И. Галкин 1 1 МГТУ им. Н.Э. Баумана, Москва, 155, Россия Дано описание построения фильтра Калмана

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ НАЦИОНАЛЬНЫЙ СТАНДАРТ российской ФЕДЕРАЦИИ ГОСТ Р 53608-2009 Глобальная навигационная спутниковая система МЕТОДЫ И ТЕХНОЛОГИИ ВЫПОЛНЕНИЯ

БАЙЕСОВСКОЕ ПРОГНОЗИРОВАНИЕ ВРЕМЕННЫХ РЯДОВ НА ОСНОВЕ МОДЕЛЕЙ В ПРОСТРАНСТВЕ СОСТОЯНИЙ В И Лобач Белорусский государственный университет Минск Беларусь E-mail: lobach@bsub Рассматривается метод прогнозирования

УДК 681.5(07) ИДЕНТИФИКАЦИЯ НЕЛИНЕЙНЫХ ДИНАМИЧЕСКИХ ОБЪЕКТОВ ВО ВРЕМЕННОЙ ОБЛАСТИ Д.Н. Вятченников, В.В. Кособуцкий, А.А. Носенко, Н.В. Плотникова Недостаточная информация об объектах при разработке их

Сер. 0. 200. Вып. 4 ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА ПРОЦЕССЫ УПРАВЛЕНИЯ УДК 539.3 В. В. Карелин ШТРАФНЫЕ ФУНКЦИИ В ЗАДАЧЕ УПРАВЛЕНИЯ ПРОЦЕССОМ НАБЛЮДЕНИЯ. Введение. Статья посвящена проблеме

УДК 63.1/.7 АЛГОРИТМЫ ВТОРИЧНОЙ ОБРАБОТКИ ИНФОРМАЦИИ В РАДИОЛОКАЦИОННОЙ СТАНЦИИ С РАЗЛИЧНЫМИ ВИДАМИ МАТРИЦЫ ДИНАМИЧЕСКОГО ПЕРЕСЧЕТА ПРИ ОПРЕДЕЛЕНИИ КООРДИНАТЫ УГЛА МЕСТА Яницкий А.А. научный руководитель

УДК 5979 + 5933 Г А Омарова Èíñòèòóò âû èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè åñêîé ãåîôèçèêè ÑÎ ÐÀÍ ïð Àêàä Ëàâðåíòüåâà, 6, Íîâîñèáèðñê, 630090, Ðîññèÿ E-mail: gulzira@ravccru Статистическая модель движения

Введение в робототехнику Лекция 12. Часть 2. Навигация и картографирование. SLAM SLAM Simultaneous Localization And Mapping (одновременная локализация и картографирование) Задача SLAM является одной из

Конспект лекции «Линейные динамические системы. Фильтр Калмана.» по спецкурсу «Структурные методы анализа изображений и сигналов» 211 Ликбез: некоторые свойства нормального распределения. Пусть x R d распределен

Система локализации робота на основе полусферической камеры Александр Овчинников, Хоа Фан Кафедра Радиоэлектронники Тульский Государственный Университет, Тула, Россия [email protected], [email protected]

Труды МАИ Выпуск 84 УДК 57:5198 wwwmairu/science/trudy/ Определение погрешностей бескарданной инерциальной навигационной системы в режиме рулежки и разгона Вавилова НБ* Голован АА Кальченко АО** Московский

# 08, август 2016 УДК 004.93"1 Нормализация данных 3D камеры с использованием метода главных компонент для решения задачи распознавания поз и поведения пользователей Умного дома Малых Д.А., студент Россия,

Национальный технический университет Украины «Киевский политехнический институт» Кафедра приборов и систем ориентации и навигации Методические указания к лабораторным работам по дисциплине «Навигационные

УДК 629.78.018:621.397.13 МЕТОД ПАРНЫХ РАССТОЯНИИ В ЗАДАЧЕ ПОЛЕТНОЙ ЮСТИРОВКИ АСТРОДАТЧИКОВ СИСТЕМЫ ОРИЕНТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ Б.М. Суховилов По мере улучшения точности и надежности астрономических

УДК 629.05 Решение задачи навигации с помощью бесплатформенной инерциальной системы навигации и системы воздушных сигналов Мкртчян В.И., студент, кафедра «Приборы и системы ориентации, стабилизации и навигации»

МОДЕЛЬ ЗРИТЕЛЬНОЙ СИСТЕМЫ ЧЕЛОВЕКА- ОПЕРАТОРА ПРИ РАСПОЗНАВАНИИ ОБРАЗОВ ОБЪЕКТОВ Ю.С. Гулина, В.Я. Колючкин Московский государственный технический университет им. Н.Э. Баумана, Изложена математическая

РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ 2015, том 2, выпуск 3, c. 79 83 УДК 681.3.06 СИСТЕМНЫЙ АНАЛИЗ, УПРАВЛЕНИЕ КОСМИЧЕСКИМИ АППАРАТАМИ, ОБРАБОТКА ИНФОРМАЦИИ И СИСТЕМЫ ТЕЛЕМЕТРИИ

Линейные динамические системы. Фильтр Калмана. Ликбез: некоторые свойства нормального распределения Плотность распределения.4.3.. -4 x b.5 x b =.7 5 p(x a x b =.7) - x p(x a,x b) p(x a) 4 3 - - -3 x.5

УДК 621.396.671 О. С. Л и т в и н о в, А. А. Г и л я з о в а ОЦЕНКА С ПОМОЩЬЮ МЕТОДА СОБСТВЕННЫХ ДИАГРАММ ВОЗДЕЙСТВИЯ ГРУПП ПОМЕХ НА ПРИЕМ ПОЛЕЗНОГО СИГНАЛА ЛИНЕЙНОЙ ЭКВИДИСТАНТНОЙ АДАПТИВНОЙ АНТЕННОЙ

УДК 681.5.15.44 ПРОНОЗИРОВАНИЕ КУСОЧНО-СТАЦИОНАРНЫХ ПРОЦЕССОВ Е.Ю. Алексеева Рассматриваются дискретные случайные процессы содержащие параметры меняющиеся скачкообразно в случайные моменты времени. Для

УДК 63966 ЛИНЕЙНАЯ ОПТИМАЛЬНАЯ ФИЛЬТРАЦИЯ ПРИ НЕ БЕЛЫХ ШУМАХ Г Ф Савинов В работе получен алгоритм оптимального фильтра для случая когда входные воздействия и шумы представляют собой случайные гауссовы

Определение колебательных движений нежёстких элементов спутника с помощью обработки видеоизображения Д.О. Лазарев Московский физико-технический институт Научный руководитель, к.ф.-м.н.: Д.С. Иванов, Институт

УДК 004 О МЕТОДАХ ОТСЛЕЖИВАНИЯ И ТРЕКИНГА ОБЪЕКТА НА ВИДЕОПОТОКЕ ПРИМЕНИТЕЛЬНО К СИСТЕМЕ ВИДЕОАНАЛИТИКИ ДЛЯ СБОРА И АНАЛИЗА МАРКЕТИНГОВЫХ ДАННЫХ Чезганов Д.А., Сериков О.Н. Южно-Российский государственный

Электронный журнал «Труды МАИ». Выпуск 66 www.ma.u/scence/tud/ УДК 69.78 Модифицированный навигационный алгоритм для определения положения ИСЗ по сигналам GS/ГЛОНАСС Куршин А. В. Московский авиационный

УДК 621.396.96 Исследование алгоритма завязки и подтверждения траекторий по критерию M из N Чернова Т.С., студент кафедры «Радиоэлектронные системы и устройства», Россия, 105005, г. Москва, МГТУ им. Н.Э.

ТЕОРІЯ ТА ПРАКТИКА НАВІГАЦІЙНИХ ПРИЛАДІВ І СИСТЕМ УДК 531.383 ВЛИЯНИЕ ПОГРЕШНОСТИ ПОВОРОТА СТЕНДА НА ТОЧНОСТЬ КА- ЛИБРОВКИ БЛОКА ГИРОСКОПОВ И АКСЕЛЕРОМЕТРОВ Аврутов В. В., Мазепа Т. Ю. Национальный технический

Лекция 6 Характеристики портфелей В предыдущих лекциях неоднократно употреблялся термин «портфель» Для математической постановки задачи о выборе оптимального портфеля необходимо строгое определение этого

ИДЕНТИФИКАЦИЯ ВРЕМЕННЫХ РЯДОВ С ПРОПУСКАМИ НА ОСНОВЕ МОДЕЛЕЙ В ПРОСТРАНСТВЕ СОСТОЯНИЙ Р. И. Меркулов В. И. Лобач Белорусский государственный университет Минск Беларусь e-mail: [email protected] [email protected]

ПРИБОРЫ И СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ УДК 51971 В Н АРСЕНЬЕВ, А Г КОХАНОВСКИЙ, А С ФАДЕЕВ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СВЯЗИ ИЗОХРОННЫХ ВАРИАЦИЙ ПЕРЕМЕННЫХ СОСТОЯНИЯ СИСТЕМЫ УПРАВЛЕНИЯ С ВОЗМУЩЕНИЯМИ ПАРАМЕТРОВ

Труды МАИ. Выпуск 89 УДК 629.051 www.mai.ru/science/trudy/ Калибровка бесплатформенной инерциальной навигационной системы при повороте вокруг вертикальной оси Матасов А.И.*, Тихомиров В.В.** Московский

Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов

УДК 62.396.26 Л.А. Подколзина, К.. Другов АЛГОРИТЫ ОБРАБОТКИ ИНФОРАЦИИ В НАВИГАЦИОННЫХ СИСТЕАХ НАЗЕНЫХ ПОДВИЖНЫХ ОБЪЕКТОВ ДЛЯ КАНАЛА ОПРЕДЕЛЕНИЯ КООРДИНАТ ЕСТОПОЛОЖЕНИЯ Для определения координат и параметров

СТАТИСТИЧЕСКИЙ АНАЛИЗ ПАРАМЕТРИЧЕСКИХ ВРЕМЕННЫХ РЯДОВ С ПРОПУСКАМИ НА ОСНОВЕ МОДЕЛЕЙ В ПРОСТРАНСТВЕ СОСТОЯНИЙ С. В. Лобач Белорусский государственный университет Минск, Беларусь е-mail: [email protected]

Математичні методи обробки даних УДК 6.39 С. Я. Жук.. Кожешкурт.. Юзефович Национальный технический университет Украины «КП» просп. Победы 37 356 Киев Украина нститут проблем регистрации информации НАН

Построение ММ статики технологических объектов При исследовании статики технологических объектов наиболее часто встречаются объекты со следующими типами структурных схем (рис: О с одной входной х и одной

Оценка параметров ориентации космического аппарата с использованием фильтра Калмана Студент, кафедра «Системы автоматического управления»: Д.И. Галкин Научный руководитель: А.А. Карпунин, к.т.н., доцент

5. Мелешко В.В. Бесплатформенные инерциальные навигационные системы: Учебн. пособ. / В.В. Мелешко, О.И. Нестеренко. Кировоград: ПОЛИМЕД-Сервис, 211. 172 с. Надійшла до редакції 17 квітня 212 року ÓКостюк

УДК 004.896 Применение геометрических преобразований для анаморфирования изображений Канев А.И., специалист Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Системы обработки информации и управления»

4. Методы Монте-Карло 1 4. Методы Монте-Карло Для моделирования различных физических, экономических и прочих эффектов широко распространены методы, называемые методами Монте-Карло. Они обязаны своим названием

Полосовая фильтрация 1 Полосовая фильтрация В предыдущих разделах была рассмотрена фильтрация быстрых вариаций сигнала (сглаживание) и его медленных вариаций (устранение тренда). Иногда требуется выделить

[ЗАМЕТКИ] Пояснение Основ фильтра Калмана С помощью Простого и интуитивно понятного Выведения Рэмси Фарахер та статья предоставляет Э простой и интуитивный вывод фильтра Калмана, с целью обучения этому

УДК 004.932 Алгоритм классификации отпечатков пальцев Ломов Д.С., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Программное обеспечение ЭВМ и информационные технологии» Научный руководитель:

Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Динамика рождаемости по Чувашской республике Содержание Введение 1. Общая тенденция рождаемости населения Чувашской республики 2. Основная тенденция рождаемости 3. Динамика рождаемости городского и сельского

IN 1990-5548 Електроніка та системи управління. 2011. 4(30) 73 УДК656.7.052.002.5:681.32(045) В. М. Синеглазов, д-р техн. наук, проф., Ш. И. Аскеров ОПТИМАЛЬНАЯ КОМПЛЕКСНАЯ ОБРАБОТКА ДАННЫХ В НАВИГАЦИОННЫХ

УДК 004.896 Особенности реализации алгоритма для отображения результатов анаморфирования Канев А.И., специалист Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Системы обработки информации и

177 УДК 658.310.8: 519.876.2 ИСПОЛЬЗОВАНИЕ ТОЧНОСТИ ОЦЕНИВАНИЯ ПРИ РЕЗЕРВИРОВАНИИ ДАТЧИКОВ Л.И. Лузина В статье рассматривается возможный подход для получения новой схемы резервирования датчиков. Традиционная

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 28. 4(54). 37 44 УДК 59.24 О КОМПЛЕКСЕ ПРОГРАММ ДЛЯ РЕШЕНИЯ ЗАДАЧИ ИДЕНТИФИКАЦИИ ЛИНЕЙНЫХ ДИНАМИЧЕСКИХ ДИСКРЕТНЫХ СТАЦИОНАРНЫХ ОБЪЕКТОВ Г.В. ТРОШИНА Рассмотрен комплекс программ

УДК 625.1:519.222:528.4 С.И. Долганюк С.И. Долганюк, 2010 ПОВЫШЕНИЕ ТОЧНОСТИ НАВИГАЦИОННОГО РЕШЕНИЯ ПРИ ПОЗИЦИОНИРОВАНИИ МАНЕВРОВЫХ ЛОКОМОТИВОВ ЗА СЧЕТ ИСПОЛЬЗОВАНИЯ ЦИФРОВЫХ МОДЕЛЕЙ ПУТЕВОГО РАЗВИТИЯ

УДК 531.1 АДАПТАЦИЯ ФИЛЬТРА КАЛМАНА ДЛЯ ИСПОЛЬЗОВАНИЯ С ЛОКАЛЬНОЙ И ГЛОБАЛЬНОЙ СИСТЕМАМИ НАВИГАЦИИ А.Н.Забегаев ([email protected]) В.Е.Павловский ([email protected]) Институт прикладной математики им.

АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ УДК 68.58.3 А. Г. Шпекторов, В. Т. Фам Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина) Анализ применения микромеханических

ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА ПОНЯТИЕ КОРРЕЛЯЦИОННОГО И РЕГРЕССИОННОГО АНАЛИЗА Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые

Лекция 4. Решение систем линейных уравнений методом простых итераций. Если система имеет большую размерность (6 уравнений) или матрица системы разрежена, более эффективны для решения непрямые итерационные

58-я научная конференция МФТИ Секция динамики и управления движением космических аппаратов Система определения движения макетов системы управления на аэродинамическом столе с использованием видеокамеры

Лекция 3 5. МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ Рассматриваются сеточные табличные функции [ a b] y 5. определенные в узлах сетки Ω. Каждая сетка характеризуется шагами h неравномерного или h

1. Численные методы решения уравнений 1. Системы линейных уравнений. 1.1. Прямые методы. 1.2. Итерационные методы. 2. Нелинейные уравнения. 2.1. Уравнения с одним неизвестным. 2.2. Системы уравнений. 1.

УДК 621.396 ИССЛЕДОВАНИЕ АЛГОРИТМОВ ВТОРИЧНОЙ ОБРАБОТКИ ИНФОРМАЦИИ МНОГОПОЗИЦИОННОЙ РАДИОЛОКАЦИОНОЙ СИСТЕМЫ ДЛЯ КАНАЛА УГЛА МЕСТА Борисов А.Н., Глинченко В.А., Назаров А.А., Исламов Р.В., Сучков П.В. Научный

Тема Численные методы линейной алгебры - - Тема Численные методы линейной алгебры Классификация Выделяют четыре основных раздела линейной алгебры: Решение систем линейных алгебраических уравнений (СЛАУ)

УДК 004.352.242 Восстановление смазанных изображений путем решения интегрального уравнения типа свертки Иванникова И.А., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Системы автоматизированного

АЭРОГРАВИМЕТРИЧЕСКАЯ СЪЕМКА ПРИ СТАНДАРТНОМ РЕЖИМЕ РАБОТЫ GPS Могилевский В.Е. АО «ГНПП «Аэрогеофизика» Важнейшим элементом, определяющим успех аэрогеофизических исследований, является качественное навигационное

АНАЛИЗ АКУСТИЧЕСКИХ СИГНАЛОВ НА ОСНОВЕ МЕТОДА ФИЛЬТРАЦИИ КАЛМАНА И.П. Гуров, П.Г. Жиганов, А.М. Озерский Рассматриваются особенности динамической обработки стохастических сигналов с использованием дискретных

УДК АА Минко ИДЕНТИФИКАЦИЯ ЛИНЕЙНОГО ОБЪЕКТА ПО РЕАКЦИИ НА ГАРМОНИЧЕСКИЙ СИГНАЛ Предложен алгоритм обобщенной идентификации на основе интегральных двупараметрических преобразований Гаусса линейного стационарного

ЛЕКЦИЯ. Оценка комплексной амплитуды сигнала. Оценка времени запаздывания сигнала. Оценка частоты сигнала со случайной фазой. Совместная оценка времени запаздывания и частоты сигнала со случайной фазой.

Вычислительные технологии Том 18, 1, 2013 Идентификация параметров процесса аномальной диффузии на основе разностных уравнений А. С. Овсиенко Самарский государственный технический университет, Россия e-mail:

1 ПРОГНОЗИРОВАНИЕ КОНЪЮНКТУРЫ РЫНКА НЕФТЕХИМИЧЕКСИХ ПРЕДПРИЯТИЙ Кордунов Д.Ю., Битюцкий С.Я. Введение. В современных условиях хозяйствования, которые характеризуются быстрым развитием мировых интеграционных

Задача одновременной локализации и построения карты (SLAM) Робошкола-2014 Андрей Антонов robotosha.ru 10 октября 2014 г. План 1 Основы SLAM 2 RGB-D SLAM 3 Робот Андрей Антонов (robotosha.ru) Задача SLAM

УДК 004.021 Т. Н. Р о м а н о в а, А. В. С и д о р и н, В. Н. С о л я к о в, К. В. К о з л о в СИНТЕЗ МОНОХРОМНОГО ИЗОБРАЖЕНИЯ ИЗ МНОГОДИАПАЗОННОГО ПОСТРОЕНИЕМ ПАЛИТРЫ С ПОМОЩЬЮ РЕШЕНИЯ УРАВНЕНИЯ ПУАССОНА

Национальный технический университет Украины «Киевский политехнический институт» Кафедра приборов и систем ориентации и навигации Методические указания к лабораторным работам по дисциплине «Навигационные

Цифровая Обработка Сигналов /9 УДК 69.78 АНАЛИТИЧЕСКИЙ МЕТОД РАСЧЕТА ПОГРЕШНОСТЕЙ ОПРЕДЕЛЕНИЯ УГЛОВОЙ ОРИЕНТАЦИИ ПО СИГНАЛАМ СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМ Алешечкин А.М. Введение Режим определения

ОСОБЕННОСТИ ФОРМИРОВАНИЯ КОМПЬЮТЕРНОЙ МОДЕЛИ ДИНАМИЧЕСКОЙ ОПТИКО-ЭЛЕКТРОННОЙ СИСТЕМЫ Позднякова Н.С., Торшина И.П. Московский государственный университет геодезии и картографии Факультет оптико-информационных

Труды ИСА РАН 009. Т. 46 III. ПРИКЛАДНЫЕ ЗАДАЧИ РАСПРЕДЕЛЕННЫХ ВЫЧИСЛЕНИЙ Стационарные состояния в нелинейной модели переноса заряда в ДНК * Стационарные состояния в нелинейной модели переноса заряда в

Винеровские фильтры лучше всего подходят для обработки процессов или отрезков процессов в целом (блочная обработка). Для последовательной обработки требуется текущая оценка сигнала на каждом такте с учетом информации, поступающей на вход фильтра в процессе наблюдения.

При винеровской фильтрации каждый новый отсчет сигнала потребовал бы пересчета всех весовых коэффициентов фильтра. В настоящее время широкое распространение получили адаптивные фильтры, в которых поступающая новая информация используется для непрерывной корректировки ранее сделанной оценки сигнала (сопровождение цели в радиолокации, системы автоматического регулирования в управлении и т.д). Особенный интерес представляют адаптивные фильтры рекурсивного типа, известные как фильтр Калмана.

Эти фильтры широко используются в контурах управления в системах автоматического регулирования и управления. Именно оттуда они и появились, подтверждением чему служит столь специфическая терминология, используемая при описании их работы, как пространство состояний.

Одна из основных задач, требующих своего решения в практике нейронных вычислений, – получение быстрых и надежных алгоритмов обучения НС. В этой связи может оказаться полезным использование в контуре обратной связи обучающего алгоритма линейных фильтров. Так как обучающие алгоритмы имеют итеративную природу, такой фильтр должен представлять собой последовательное рекурсивное устройство оценки.

Задача оценки параметров

Одной из задач теории статистических решений, имеющих большое практическое значение, является задача оценки векторов состояния и параметров систем, которая формулируется следующим образом. Предположим, необходимо оценить значение векторного параметра $X$, недоступного непосредственному измерению. Вместо этого измеряется другой параметр $Z$, зависящий от $X$. Задача оценивания состоит в ответе на вопрос: что можно сказать об $X$, зная $Z$. В общем случае, процедура оптимальной оценки вектора $X$ зависит от принятого критерия качества оценки.

Например, байесовский подход к задаче оценки параметров требует полной априорной информации о вероятностных свойствах оцениваемого параметра, что зачастую невозможно. В этих случаях прибегают к методу наименьших квадратов (МНК), который требует значительно меньше априорной информации.

Рассмотрим применения МНК для случая, когда вектор наблюдения $Z$ связан с вектором оценки параметров $X$ линейной моделью, и в наблюдении присутствует помеха $V$, некоррелированная с оцениваемым параметром:

$Z = HX + V$, (1)

где $H$ – матрица преобразования, описывающая связь наблюдаемых величин с оцениваемыми параметрами.

Оценка $X$, минимизирующая квадрат ошибки, записывается следующим образом:

$X_{оц}=(H^TR_V^{-1}H)^{-1}H^TR_V^{-1}Z$, (2)

Пусть помеха $V$ не коррелирована, в этом случае матрица $R_V$ есть просто единичная матрица, и уравнение для оценки становится проще:

$X_{оц}=(H^TH)^{-1}H^TZ$, (3)

Запись в матричной форме сильно экономит бумагу, но может быть для кого то непривычна. Следующий пример, взятый из монографии Коршунова Ю. М. "Математические основы кибернетики", все это иллюстрирует.
Имеется следующая электрическая цепь:

Наблюдаемые величины в данном случае – показания приборов $A_1 = 1 A, A_2 = 2 A, V = 20 B$.

Кроме того, известно сопротивление $R = 5$ Ом. Требуется оценить наилучшим образом, с точки зрения критерия минимума среднего квадрата ошибки значения токов $I_1$ и $I_2$. Самое важное здесь заключается в том, что между наблюдаемыми величинами (показаниями приборов) и оцениваемыми параметрами существует некоторая связь. И эта информация привносится извне.

В данном случае, это законы Кирхгофа, в случае фильтрации (о чем речь пойдет дальше) – авторегрессионная модель временного ряда, предполагающая зависимость текущего значения от предшествующих.

Итак, знание законов Кирхгофа, никак не связанное с теорией статистических решений, позволяет установить связь между наблюдаемыми значениями и оцениваемыми параметрами (кто изучал электротехнику – могут проверить, остальным придется поверить на слово):

$$z_1 = A_1 = I_1 + \xi_1 = 1$$

$$z_2 = A_2 = I_1 + I_2 + \xi_2 = 2$$

$$z_2 = V/R = I_1 + 2 * I_2 + \xi_3 = 4$$

Это же в векторной форме:

$$\begin{vmatrix} z_1\\ z_2\\ z_3 \end{vmatrix} = \begin{vmatrix} 1 & 0\\ 1 & 1\\ 1 & 2 \end{vmatrix} \begin{vmatrix} I_1\\ I_2 \end{vmatrix} + \begin{vmatrix} \xi_1\\ \xi_2\\ \xi_3 \end{vmatrix}$$

Или $Z = HX + V$, где

$$Z= \begin{vmatrix} z_1\\ z_2\\ z_3 \end{vmatrix} = \begin{vmatrix} 1\\ 2\\ 4 \end{vmatrix} ; H= \begin{vmatrix} 1 & 0\\ 1 & 1\\ 1 & 2 \end{vmatrix} ; X= \begin{vmatrix} I_1\\ I_2 \end{vmatrix} ; V= \begin{vmatrix} \xi_1\\ \xi_2\\ \xi_3 \end{vmatrix}$$

Считая значения помехи некоррелированными между собой, найдем оценку I 1 и I 2 по методу наименьших квадратов в соответствии с формулой 3:

$H^TH= \begin{vmatrix} 1 & 1& 1\\ 0 & 1& 2 \end{vmatrix} \begin{vmatrix} 1 & 0\\ 1 & 1\\ 1 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 3\\ 3 & 5 \end{vmatrix} ; (H^TH)^{-1}= \frac{1}{6} \begin{vmatrix} 5 & -3\\ -3 & 3 \end{vmatrix} $;

$H^TZ= \begin{vmatrix} 1 & 1& 1\\ 0 & 1& 2 \end{vmatrix} \begin{vmatrix} 1 \\ 2\\ 4 \end{vmatrix} = \begin{vmatrix} 7\\ 10 \end{vmatrix} ; X{оц}= \frac{1}{6} \begin{vmatrix} 5 & -3\\ -3 & 3 \end{vmatrix} \begin{vmatrix} 7\\ 10 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 5\\ 9 \end{vmatrix}$;

Итак $I_1 = 5/6 = 0,833 A$; $I_2 = 9/6 = 1,5 A$.

Задача фильтрации

В отличие от задачи оценки параметров, которые имеют фиксированные значения, в задаче фильтрации требуется оценивать процессы, то есть находить текущие оценки изменяющегося во времени сигнала, искаженного помехой, и, в силу этого, недоступного непосредственному измерению. В общем случае вид алгоритмов фильтрации зависит от статистических свойств сигнала и помехи.

Будем предполагать, что полезный сигнал – медленно меняющаяся функция времени, а помеха – некоррелированный шум. Будем использовать метод наименьших квадратов, опять же по причине отсутствия априорных сведений о вероятностных характеристиках сигнала и помехи.

Вначале получим оценку текущего значения $x_n$ по имеющимся $k$ последним значениям временного ряда $z_n, z_{n-1},z_{n-2}\dots z_{n-(k-1)}$. Модель наблюдения та же, что и в задаче оценки параметров:

Понятно, что $Z$ – это вектор–столбец, состоящий из наблюдаемых значений временного ряда $z_n, z_{n-1},z_{n-2}\dots z_{n-(k-1)}$, $V$ – вектор–столбец помехи $\xi _n, \xi _{n-1},\xi_{n-2}\dots \xi_{n-(k-1)}$, искажающий истинный сигнал. А что означают символы $H$ и $X$? О каком, например, векторе–столбце $X$ может идти речь, если все, что необходимо, – это дать оценку текущего значения временного ряда? А что понимать под матрицей преобразований $H$, вообще непонятно.

На все эти вопросы можно ответить только при условии введения в рассмотрение понятия модели генерации сигнала. То есть, необходима некоторая модель исходного сигнала. Это и понятно, при отсутствии априорной информации о вероятностных характеристиках сигнала и помехи остается только строить предположения. Можно назвать это гаданием на кофейной гуще, но специалисты предпочитают другую терминологию. На их "фене" это называется параметрическая модель.

В данном случае оцениваются параметры именно этой модели. При выборе подходящей модели генерации сигнала вспомним о том, что любую аналитическую функцию можно разложить в ряд Тейлора. Поразительное свойство ряда Тейлора заключается в том, что форма функции на любом конечном расстоянии $t$ от некой точки $x=a$ однозначно определяется поведением функции в бесконечно малой окрестности точки $x=a$ (речь идет о ее производных первого и высшего порядков).

Таким образом, существование рядов Тейлора означает, что аналитическая функция обладает внутренней структурой с очень сильной связью. Если, например, ограничиться тремя членами ряда Тейлора, то модель генерации сигнала будет выглядеть так:

$x_{n-i} = F_{-i}x_n$, (4)

$$X_n= \begin{vmatrix} x_n\\ x"_n\\ x""_n \end{vmatrix} ; F_{-i}= \begin{vmatrix} 1 & -i & i^2/2\\ 0 & 1 & -i\\ 0 & 0 & 1 \end{vmatrix} $$

То есть формула 4, при заданном порядке полинома (в примере он равен 2) устанавливает связь между $n$-ым значением сигнала во временной последовательности и $(n-i)$–ым. Таким образом, оцениваемый вектор состояния в данном случае включает в себя, помимо собственно оцениваемого значения, первую и вторую производную сигнала.

В теории автоматического управления такой фильтр назвали бы фильтром с астатизмом 2-го порядка. Матрица преобразования $H$ для данного случая (оценка осуществляется по текущему и $k-1$ предшествующим выборкам) выглядит так:

$$H= \begin{vmatrix} 1 & -k & k^2/2\\ - & - & -\\ 1 & -2 & 2\\ 1 & -1 & 0.5\\ 1 & 0 & 0 \end{vmatrix}$$

Все эти числа получаются из ряда Тейлора в предположении, что временной интервал между соседними наблюдаемыми значениями постоянный и равен 1.

Итак, задача фильтрации при принятых нами предположениях свелась к задаче оценки параметров; в данном случае оцениваются параметры принятой нами модели генерации сигнала. И оценка значений вектора состояния $X$ осуществляется по той же формуле 3:

$$X_{оц}=(H^TH)^{-1}H^TZ$$

По сути, мы реализовали процесс параметрического оценивания, основанный на авторегрессионной модели процесса генерации сигнала.

Формула 3 легко реализуется программно, для этого нужно заполнить матрицу $H$ и вектор столбец наблюдений $Z$. Такие фильтры называются фильтры с конечной памятью , так как для получения текущей оценки $X_{nоц}$ они используют последние $k$ наблюдений. На каждом новом такте наблюдения к текущей совокупности наблюдений прибавляется новое и отбрасывается старое. Такой процесс получения оценок получил название скользящего окна .

Фильтры с растущей памятью

Фильтры с конечной памятью обладают тем основным недостатком, что после каждого нового наблюдения необходимо заново производить полный пересчет по всем хранящимся в памяти данным. Кроме того, вычисление оценок можно начинать только после того, как накоплены результаты первых $k$ наблюдений. То есть эти фильтры обладают большой длительностью переходного процесса.

Чтобы бороться с этим недостатком, необходимо перейти от фильтра с постоянной памятью к фильтру с растущей памятью . В таком фильтре число наблюдаемых значений, по которым производится оценка, должна совпадать с номером n текущего наблюдения. Это позволяет получать оценки, начиная с числа наблюдений, равного числу компонент оцениваемого вектора $X$. А это определяется порядком принятой модели, то есть сколько членов из ряда Тейлора используется в модели.

При этом с ростом n улучшаются сглаживающие свойства фильтра, то есть повышается точность оценок. Однако непосредственная реализация этого подхода связана с возрастанием вычислительных затрат. Поэтому фильтры с растущей памятью реализуются как рекуррентные .

Дело в том, что к моменту n мы уже имеем оценку $X_{(n-1)оц}$, в которой содержится информация обо всех предыдущих наблюдениях $z_n, z_{n-1}, z_{n-2} \dots z_{n-(k-1)}$. Оценку $X_{nоц}$ получаем по очередному наблюдению $z_n$ с использованием информации, хранящейся в оценке $X_{(n-1)}{\mbox {оц}}$. Такая процедура получила название рекуррентной фильтрации и состоит в следующем:

  • по оценке $X_{(n-1)}{\mbox {оц}}$ прогнозируют оценку $X_n$ по формуле 4 при $i = 1$: $X_{\mbox {nоцаприори}} = F_1X_{(n-1)оц}$. Это априорная оценка;
  • по результатам текущего наблюдения $z_n$, эту априорную оценку превращают в истинную, то есть апостериорную;
  • эта процедура повторяется на каждом шаге, начиная с $r+1$, где $r$ – порядок фильтра.

Окончательная формула рекуррентной фильтрации выглядит так:

$X_{(n-1)оц} = X_{\mbox {nоцаприори}} + (H^T_nH_n)^{-1}h^T_0(z_n - h_0 X_{\mbox {nоцаприори}})$, (6)

где для нашего фильтра второго порядка:

Фильтр с растущей памятью, работающий в соответствии с формулой 6 – частный случай алгоритма фильтрации, известного под названием фильтра Калмана.

При практической реализации этой формулы необходимо помнить, что входящая в него априорная оценка определяется по формуле 4, а величина $h_0 X_{\mbox {nоцаприори}}$ представляет собой первую компоненту вектора $X_{\mbox {nоцаприори}}$.

У фильтра с растущей памятью имеется одна важная особенность. Если посмотреть на формулу 6, то окончательная оценка есть сумма прогнозируемого вектора оценки и корректирующего члена. Эта поправка велика при малых $n$ и уменьшается при увеличении $n$, стремясь к нулю при $n \rightarrow \infty$. То есть с ростом n сглаживающие свойства фильтра растут и начинает доминировать модель, заложенная в нем. Но реальный сигнал может соответствовать модели лишь на отдельных участках, поэтому точность прогноза ухудшается.

Чтобы с этим бороться, начиная с некоторого $n$, накладывают запрет на дальнейшее уменьшение поправочного члена. Это эквивалентно изменению полосы фильтра, то есть при малых n фильтр более широкополосен (менее инерционен), при больших – он становится более инерционен.

Сравните рисунок 1 и рисунок 2. На первом рисунке фильтр имеет большую память, при этом он хорошо сглаживает, но в силу узкополосности оцениваемая траектория отстает от реальной. На втором рисунке память фильтра меньше, он хуже сглаживает, но лучше отслеживает реальную траекторию.

Литература

  1. Ю.М.Коршунов "Математические основы кибернетики"
  2. А.В.Балакришнан "Теория фильтрации Калмана"
  3. В.Н.Фомин "Рекуррентное оценивание и адаптивная фильтрация"
  4. К.Ф.Н.Коуэн, П.М. Грант "Адаптивные фильтры"

В интернете, в том числе и на хабре, можно найти много информации про фильтр Калмана. Но тяжело найти легкоперевариваемый вывод самих формул. Без вывода вся эта наука воспринимается как некое шаманство, формулы выглядят как безликий набор символов, а главное, многие простые утверждения, лежащие на поверхности теории, оказываются за пределами понимания. Целью этой статьи будет рассказать об этом фильтре на как можно более доступном языке.
Фильтр Калмана - это мощнейший инструмент фильтрации данных. Основной его принцип состоит в том, что при фильтрации используется информация о физике самого явления. Скажем, если вы фильтруете данные со спидометра машины, то инерционность машины дает вам право воспринимать слишком быстрые скачки скорости как ошибку измерения. Фильтр Калмана интересен тем, что в каком-то смысле, это самый лучший фильтр. Подробнее обсудим ниже, что конкретно означают слова «самый лучший». В конце статьи я покажу, что во многих случаях формулы можно до такой степени упростить, что от них почти ничего и не останется.

Ликбез

Перед знакомством с фильтром Калмана я предлагаю вспомнить некоторые простые определения и факты из теории вероятности.

Случайная величина

Когда говорят, что дана случайная величина , то имеют ввиду, что эта величина, может принимать случайные значения. Разные значения она принимает с разной вероятностью. Когда вы кидаете, скажем, кость, то выпадет дискретное множество значений: . Когда речь идет, например, о скорости блуждающей частички, то, очевидно, приходится иметь дело с непрерывным множеством значений. «Выпавшие» значения случайной величины мы будем обозначать через , но иногда, будем использовать ту же букву, которой обозначаем случайную величину: .
В случае с непрерывным множеством значений случайную величину характеризует плотность вероятности , которая нам диктует, что вероятность того, что случайная величина «выпадет» в маленькой окрестности точки длиной равна . Как мы видим из картинки, эта вероятность равна площади заштрихованного прямоугольника под графиком:

Довольно часто в жизни случайные величины распределены по Гауссу, когда плотность вероятности равна .

Мы видим, что функция имеет форму колокола с центром в точке и с характерной шириной порядка .
Раз мы заговорили о Гауссовом распределении, то грешно будет не упомянуть, откуда оно возникло. Также как и числа и прочно обосновались в математике и встречаются в самых неожиданных местах, так и распределение Гаусса пустило глубокие корни в теорию вероятности. Одно замечательное утверждение, частично объясняющее Гауссово всеприсутствие, состоит в следующем:
Пусть есть случайная величина имеющая произвольное распределение (на самом деле существуют некие ограничения на эту произвольность, но они совершенно не жесткие). Проведем экспериментов и посчитаем сумму «выпавших» значений случайной величины. Сделаем много таких экспериментов. Понятно, что каждый раз мы будем получать разное значение суммы. Иными словами, эта сумма является сама по себе случайной величиной со своим каким-то определенным законом распределения. Оказывается, что при достаточно больших закон распределения этой суммы стремится к распределению Гаусса (к слову, характерная ширина «колокола» растет как ). Более подробно читаем в википедии: центральная предельная теорема . В жизни очень часто встречаются величины, которые складываются из большого количества одинаково распределенных независимых случайных величин, поэтому и распределены по Гауссу.

Среднее значение

Среднее значение случайной величины - это то, что мы получим в пределе, если проведем очень много экспериментов, и посчитаем среднее арифметическое выпавших значений. Среднее значение обозначают по-разному: математики любят обозначать через (математическое ожидание), а заграничные математики через (expectation). Физики же через или . Мы будем обозначать на заграничный лад: .
Например, для Гауссова распределения , среднее значение равно .

Дисперсия

В случае с распределением Гаусса мы совершенно четко видим, что случайная величина предпочитает выпадать в некоторой окрестности своего среднего значения . Как видно из графика, характерный разброс значений порядка . Как же оценить этот разброс значений для произвольной случайной величины, если мы знаем ее распределение. Можно нарисовать график ее плотности вероятности и оценить характерную ширину на глаз. Но мы предпочитаем идти алгебраическим путем. Можно найти среднюю длину отклонения (модуль) от среднего значения: . Эта величина будет хорошей оценкой характерного разброса значений . Но мы с вами очень хорошо знаем, что использовать модули в формулах - одна головная боль, поэтому эту формулу редко используют для оценок характерного разброса.
Более простой способ (простой в смысле расчетов) - найти . Эту величину называют дисперсией, и часто обозначают как . Корень из дисперсии называют среднеквадратичным отклонением. Среднеквадратичное отклонение - хорошая оценка разброса случайной величины.
Например, для распределение Гаусса можно посчитать, что определенная выше дисперсия в точности равна , а значит среднеквадратичное отклонение равно , что очень хорошо согласуется с нашей геометрической интуицией.
На самом деле тут скрыто маленькое мошенничество. Дело в том, что в определении распределения Гаусса под экспонентой стоит выражение . Эта двойка в знаменателе стоит именно для того, чтобы среднеквадратичное отклонение равнялось бы коэффициенту . То есть сама формула распределения Гаусса написана в виде, специально заточенном для того, что мы будем считать ее среднеквадратичное отклонение.

Независимые случайные величины

Случайные величины бывают зависимыми и нет. Представьте, что вы бросаете иголку на плоскость и записываете координаты ее обоих концов. Эти две координаты зависимы, они связаны условием, что расстояние между ними всегда равно длине иголки, хотя и являются случайными величинами.
Случайные величины независимы, если результат выпадения первой из них совершенно не зависит от результата выпадения второй из них. Если случайные величины и независимы, то среднее значение их произведения равно произведению их средних значений:

Доказательство

Например, иметь голубые глаза и окончить школу с золотой медалью - независимые случайные величины. Если голубоглазых, скажем а золотых медалистов , то голубоглазых медалистов Этот пример подсказывает нам, что если случайные величины и заданы своими плотностями вероятности и , то независимость этих величин выражается в том, что плотность вероятности (первая величина выпала , а вторая ) находится по формуле:

Из этого сразу же следует, что:

Как вы видите, доказательство проведено для случайных величин, которые имеют непрерывный спектр значений и заданы своей плотностью вероятности. В других случаях идея доказательтсва аналогичная.

Фильтр Калмана

Постановка задачи

Обозначим за величину, которую мы будем измерять, а потом фильтровать. Это может быть координата, скорость, ускорение, влажность, степень вони, температура, давление, и т.д.
Начнем с простого примера, который и приведет нас к формулировке общей задачи. Представьте себе, что у нас есть радиоуправляемая машинка, которая может ехать только вперед и назад. Мы, зная вес машины, форму, покрытие дороги и т.д., расcчитали как контролирующий джойстик влияет на скорость движения .

Тогда координата машины будет изменяться по закону:

В реальной же жизни мы не можем учесть в наших расчетах маленькие возмущения, действующие на машину (ветер, ухабы, камушки на дороге), поэтому настоящая скорость машины, будет отличаться от расчетной. К правой части написанного уравнения добавится случайная величина :

У нас есть установленный на машинке GPS сенсор, который пытается мерить истинную координату машинки, и, конечно же, не может ее померить точно, а мерит с ошибкой , которая является тоже случайной величиной. В итоге с сенсора мы получаем ошибочные данные:

Задача состоит в том, что, зная неверные показания сенсора, найти хорошее приближение для истинной координаты машины .
В формулировке же общей задачи, за координату может отвечать все что угодно (температура, влажность…), а член, отвечающий за контроль системы извне мы обозначим за (в примере c машиной ). Уравнения для координаты и показания сенсора будут выглядеть так:

Давайте подробно обсудим, что нам известно:

Нелишним будет отметить, что задача фильтрации - это не задача сглаживания. Мы не стремимся сглаживать данные с сенсора, мы стремимся получить наиболее близкое значение к реальной координате .

Алгоритм Калмана

Мы будем рассуждать по индукции. Представьте себе, что на -ом шаге мы уже нашли отфильтрованное значение с сенсора , которое хорошо приближает истинную координату системы . Не забываем, что мы знаем уравнение, контролирующее изменение нам неизвестной координаты:

поэтому, еще не получая значение с сенсора, мы можем предположить, что на шаге система эволюционирует согласно этому закону и сенсор покажет что-то близкое к . К сожалению, пока мы не можем сказать ничего более точного. С другой стороны, на шаге у нас на руках будет неточное показание сенсора .
Идея Калмана состоит в следующем. Чтобы получить наилучшее приближение к истинной координате , мы должны выбрать золотую середину между показанием неточного сенсора и нашим предсказанием того, что мы ожидали от него увидеть. Показанию сенсора мы дадим вес а на предсказанное значение останется вес :

Коэффициент называют коэффициентом Калмана. Он зависит от шага итерации, поэтому правильнее было бы писать , но пока, чтобы не загромождать формулы расчетах, мы будем опускать его индекс.
Мы должны выбрать коэффициент Калмана таким, чтобы получившееся оптимальное значение координаты было бы наиболее близко к истинной . К примеру, если мы знаем, что наш сенсор очень точный, то мы будем больше доверять его показанию и дадим значению больше весу ( близко единице). Eсли же сенсор, наоборот, совсем не точный, тогда больше будем ориентироваться на теоретически предсказанное значение .
В общем случае, чтобы найти точное значение коэффициента Калмана , нужно просто минимизировать ошибку:

Используем уравнения (1) (те которые в на голубом фоне в рамочке), чтобы переписать выражение для ошибки:

Доказательство

Теперь самое время обсудить, что означает выражение минимизировать ошибку? Ведь ошибка, как мы видим, сама по себе является случайной величиной и каждый раз принимает разные значения. На самом деле не существует однозначного подхода к определению того, что означает, что ошибка минимальна. Точно также как и в случае с дисперсией случайной величины, когда мы пытались оценить характерную ширину ее разброса, так и тут мы выберем самый простой для расчетов критерий. Мы будем минимизировать среднее значение от квадрата ошибки:

Распишем последнее выражение:

Доказательство

Из того что все случайные величины, входящие в выражение для , независимы, следует, что все «перекрестные» члены равны нулю:

Мы использовали тот факт, что , тогда формула для дисперсии выглядит намного проще: .

Это выражение принимает минимальное значение, когда(приравниваем производную к нулю):

Здесь мы уже пишем выражение для коэффициента Калмана с индексом шага , тем самым мы подчеркиваем, что он зависит от шага итерации.
Подставляем полученное оптимальное значение в выражение для , которую мы минимизировали. Получаем;

Наша задача решена. Мы получили итерационную формулу, для вычисления коэффициента Калмана.
Давайте сведем, наши полученные знания в одну рамочку:

Пример

Код на матлабе

Clear all; N=100 % number of samples a=0.1 % acceleration sigmaPsi=1 sigmaEta=50; k=1:N x=k x(1)=0 z(1)=x(1)+normrnd(0,sigmaEta); for t=1:(N-1) x(t+1)=x(t)+a*t+normrnd(0,sigmaPsi); z(t+1)=x(t+1)+normrnd(0,sigmaEta); end; %kalman filter xOpt(1)=z(1); eOpt(1)=sigmaEta; for t=1:(N-1) eOpt(t+1)=sqrt((sigmaEta^2)*(eOpt(t)^2+sigmaPsi^2)/(sigmaEta^2+eOpt(t)^2+sigmaPsi^2)) K(t+1)=(eOpt(t+1))^2/sigmaEta^2 xOpt(t+1)=(xOpt(t)+a*t)*(1-K(t+1))+K(t+1)*z(t+1) end; plot(k,xOpt,k,z,k,x)

Анализ

Если проследить, как с шагом итерации изменяется коэффициент Калмана , то можно показать, что он всегда стабилизируется к определенному значению . К примеру, когда среднеквадратичные ошибки сенсора и модели относятся друг к другу как десять к одному, то график коэффициента Калмана в зависимости от шага итерации выглядит так:

В следующем примере мы обсудим как это поможет существенно облегчить нашу жизнь.

Второй пример

На практике очень часто бывает, что нам вообще ничего не известно о физической модели того, что мы фильтруем. К примеру, вы захотели отфильтровать показания с вашего любимого акселерометра. Вам же заранее неизвестно по какому закону вы намереваетесь крутить акселерометр. Максимум информации, которую вы можете выцепить - это дисперсия ошибки сенсора . В такой непростой ситуации все незнание модели движения можно загнать в случайную величину :

Но, откровенно говоря, такая система уже совершенно не удовлетворяет тем условиям, которые мы налагали на случайную величину , ведь теперь туда запрятана вся неизвестная нам физика движения, и поэтому мы не можем говорить, что в разные моменты времени ошибки модели независимы друг от друга и что их средние значения равны нулю. В этом случае, по большому счету, теория фильтра Калмана не применима. Но, мы не будем обращать внимания на этот факт, а, тупо применим все махину формул, подобрав коэффициенты и на глаз, так чтобы отфильтрованные данные миленько смотрелась.
Но можно пойти по другому, намного более простому пути. Как мы видели выше, коэффициент Калмана с увеличением всегда стабилизируется к значению . Поэтому вместо того, чтобы подбирать коэффициенты и и находить по сложным формулам коэффициент Калмана , мы можем считать этот коэффициент всегда константой, и подбирать только эту константу. Это допущение почти ничего не испортит. Во-первых, мы уже и так незаконно пользуемся теорией Калмана, а во-вторых коэффициент Калмана быстро стабилизируется к константе. В итоге все очень упростится. Нам вообще никакие формулы из теории Калмана не нужны, нам просто нужно подобрать приемлемое значение и вставить в итерационную формулу:

На следующем графике показаны отфильтрованные двумя разными способами данные с вымышленного сенсора. При условии того, что мы ничего не знаем о физике явления. Первый способ - честный, со всеми формулами из теории Калмана. А второй - упрощенный, без формул.

Как мы видим, методы почти ничем не отличаются. Маленькое отличие наблюдается, только вначале, когда коэффициент Калмана еще не стабилизировался.

Обсуждение

Как мы увидели, основная идея фильтра Калмана состоит в том, чтобы найти такой коэффициент , чтобы отфильтрованное значение

в среднем меньше всего отличалось бы от реального значения координаты . Мы видим, что отфильтрованное значение есть линейная функция от показания сенсора и предыдущего отфильтрованного значения . А предыдущее отфильтрованное значение является, в свою очередь, линейной функцией от показания сенсора и предпредыдущего отфильтрованного значения . И так далее, пока цепь полностью не развернется. То есть отфильтрованное значение зависит от всех предыдущих показаний сенсора линейно:

Поэтому фильтр Калмана называют линейным фильтром.
Можно доказать, что из всех линейных фильтров Калмановский фильтр самый лучший. Самый лучший в том смысле, что средний квадрат ошибки фильтра минимален.

Многомерный случай

Всю теорию фильтра Калмана можно обобщить на многомерный случай. Формулы там выглядят чуть страшнее, но сама идея их вывода такая же, как и в одномерном случае. В этой прекрасной статье вы можете увидеть их: http://habrahabr.ru/post/140274/ .
А в этом замечательном видео разобран пример, как их использовать.